Neurochemical Research

, Volume 35, Issue 4, pp 572–579 | Cite as

Comparison of the Efficiencies of Three Neural Induction Protocols in Human Adipose Stromal Cells

Original Paper

Abstract

The aim of this study was to compare the neural differentiation potential and the expression of neurotrophic factors (NTFs) in differentiated adipose-derived stem cells (ADSCs) using three established induction protocols, serum free (Protocol 1), chemical reagents (Protocol 2), and spontaneous (Protocol 3) protocols. Protocol 1 produced the highest percentage of mature neural-like cells (MAP2ab+). Protocol 2 showed the highest percentage of immature neural-like cells (β-tubulin III+), but the neural-like state was transient and reversible. Protocol 3 caused ADSCs to differentiate spontaneously into immature neural-like cells, but not into mature neural cell types. The neural-like cells produced by Protocol 1 lived the longest in culture with little cell death, but Protocol 2 and 3 led to the significant cell death. Therefore, Protocol 1 is the most efficient among these protocols. Additionally, soon after differentiation, the mRNA levels of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in dADSCs were sharply decreased by Protocol 1 and 2 (acute induction protocol), but not by Protocol 3 (chronic induction protocol). The results indicate that NTFs played an important role in neural differentiation via acute responses to NGF and BDNF, but not chronically during the transdifferentiation process.

Keywords

Mesenchymal stem cells Transdifferentiation Neural differentiation Nerve growth factors 

References

  1. 1.
    Kingham PJ, Kalbermatten DF, Mahay D, Armstrong SJ, Wiberg M, Terenghi G (2007) Adipose-derived stem cells differentiate into a Schwann cell phenotype and promote neurite outgrowth in vitro. Exp Neurol 207(2):267–274CrossRefPubMedGoogle Scholar
  2. 2.
    Gimble JM, Guilak F (2003) Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol 58:137–160CrossRefPubMedGoogle Scholar
  3. 3.
    Strem BM, Hicok KC, Zhu M, Wulur I, Alfonso Z, Schreiber RE et al (2005) Multipotential differentiation of adipose tissue-derived stem cells. Keio J Med 54(3):132–141CrossRefPubMedGoogle Scholar
  4. 4.
    Ning H, Lin G, Lue TF, Lin CS (2006) Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation 74(9–10):510–518CrossRefPubMedGoogle Scholar
  5. 5.
    Huang T, He D, Kleiner G, Kuluz J (2007) Neuron-like differentiation of adipose-derived stem cells from infant piglets in vitro. J Spinal Cord Med 30(Suppl 1):S35–S40PubMedGoogle Scholar
  6. 6.
    Kang SK, Putnam LA, Ylostalo J, Popescu IR, Dufour J, Belousov A et al (2004) Neurogenesis of Rhesus adipose stromal cells. J Cell Sci 117(Pt 18):4289–4299CrossRefPubMedGoogle Scholar
  7. 7.
    Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61(4):364–370CrossRefPubMedGoogle Scholar
  8. 8.
    Jiang Y, Jahagirdar BN, Reinhardt RL, Schwartz RE, Keene CD, Ortiz-Gonzalez XR et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418(6893):41–49CrossRefPubMedGoogle Scholar
  9. 9.
    Jiang Y, Henderson D, Blackstad M, Chen A, Miller RF, Verfaillie CM (2003) Neuroectodermal differentiation from mouse multipotent adult progenitor cells. Proc Natl Acad Sci USA 100(Suppl 1):11854–11860CrossRefPubMedGoogle Scholar
  10. 10.
    Hermann A, Gastl R, Liebau S, Popa MO, Fiedler J, Boehm BO et al (2004) Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J Cell Sci 117(Pt 19):4411–4422CrossRefPubMedGoogle Scholar
  11. 11.
    Wislet-Gendebien S, Leprince P, Moonen G, Rogister B (2003) Regulation of neural markers nestin and GFAP expression by cultivated bone marrow stromal cells. J Cell Sci 116(Pt 16):3295–3302CrossRefPubMedGoogle Scholar
  12. 12.
    Wislet-Gendebien S, Hans G, Leprince P, Rigo JM, Moonen G, Rogister B (2005) Plasticity of cultured mesenchymal stem cells: switch from nestin-positive to excitable neuron-like phenotype. Stem Cells 23(3):392–402CrossRefPubMedGoogle Scholar
  13. 13.
    Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A et al (2000) Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 164(2):247–256CrossRefPubMedGoogle Scholar
  14. 14.
    Kohyama J, Abe H, Shimazaki T, Koizumi A, Nakashima K, Gojo S et al (2001) Brain from bone: efficient “meta-differentiation” of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation 68(4–5):235–244CrossRefPubMedGoogle Scholar
  15. 15.
    Tseng PY, Chen CJ, Sheu CC, Yu CW, Huang YS (2007) Spontaneous differentiation of adult rat marrow stromal cells in a long-term culture. J Vet Med Sci 69(2):95–102CrossRefPubMedGoogle Scholar
  16. 16.
    Wagers AJ, Christensen JL, Weissman IL (2002) Cell fate determination from stem cells. Gene Ther 9(10):606–612CrossRefPubMedGoogle Scholar
  17. 17.
    Alvarez-Dolado M, Pardal R, Garcia-Verdugo JM, Fike JR, Lee HO, Pfeffer K et al (2003) Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425(6961):968–973CrossRefPubMedGoogle Scholar
  18. 18.
    Weimann JM, Charlton CA, Brazelton TR, Hackman RC, Blau HM (2003) Contribution of transplanted bone marrow cells to Purkinje neurons in human adult brains. Proc Natl Acad Sci USA 100(4):2088–2093CrossRefPubMedGoogle Scholar
  19. 19.
    Castro RF, Jackson KA, Goodell MA, Robertson CS, Liu H, Shine HD (2002) Failure of bone marrow cells to transdifferentiate into neural cells in vivo. Science 297(5585):1299CrossRefPubMedGoogle Scholar
  20. 20.
    Ono K, Yoshihara K, Suzuki H, Tanaka KF, Takii T, Onozaki K et al (2003) Preservation of hematopoietic properties in transplanted bone marrow cells in the brain. J Neurosci Res 72(4):503–507CrossRefPubMedGoogle Scholar
  21. 21.
    Li N, Yang H, Lu L, Duan C, Zhao C, Zhao H (2007) Spontaneous expression of neural phenotype and NGF, TrkA, TrkB genes in marrow stromal cells. Biochem Biophys Res Commun 356(3):561–568CrossRefPubMedGoogle Scholar
  22. 22.
    Yaghoobi MM, Mahani MT (2008) NGF and BDNF expression drop off in neurally differentiated bone marrow stromal stem cells. Brain Res 1203:26–31CrossRefPubMedGoogle Scholar
  23. 23.
    Levi-Montalcini R, Skaper SD, Dal Toso R, Petrelli L, Leon A (1996) Nerve growth factor: from neurotrophin to neurokine. Trends Neurosci 19(11):514–520CrossRefPubMedGoogle Scholar
  24. 24.
    Barbacid M (1995) Neurotrophic factors and their receptors. Curr Opin Cell Biol 7(2):148–155CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang HT, Luo J, Sui LS, Ma X, Yan ZJ, Lin JH et al (2009) Effects of differentiated versus undifferentiated adipose tissue-derived stromal cell grafts on functional recovery after spinal cord contusion. Cell Mol NeurobiolGoogle Scholar
  26. 26.
    Zhang HT, Cheng HY, Zhang L, Fan J, Chen YZ, Jiang XD et al (2009) Umbilical cord blood cell-derived neurospheres differentiate into Schwann-like cells. Neuroreport 20(4):354–359CrossRefPubMedGoogle Scholar
  27. 27.
    Bunnell BA, Ylostalo J, Kang SK (2006) Common transcriptional gene profile in neurospheres-derived from pATSCs, pBMSCs, and pNSCs. Biochem Biophys Res Commun 343(3):762–771CrossRefPubMedGoogle Scholar
  28. 28.
    Lu P, Blesch A, Tuszynski MH (2004) Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact? J Neurosci Res 77(2):174–191CrossRefPubMedGoogle Scholar
  29. 29.
    Neuhuber B, Gallo G, Howard L, Kostura L, Mackay A, Fischer I (2004) Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res 77(2):192–204CrossRefPubMedGoogle Scholar
  30. 30.
    Croft AP, Przyborski SA (2006) Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture. Stem Cells 24(8):1841–1851CrossRefPubMedGoogle Scholar
  31. 31.
    Chen Q, Long Y, Yuan X, Zou L, Sun J, Chen S et al (2005) Protective effects of bone marrow stromal cell transplantation in injured rodent brain: synthesis of neurotrophic factors. J Neurosci Res 80(5):611–619CrossRefPubMedGoogle Scholar
  32. 32.
    Lu P, Tuszynski MH (2005) Can bone marrow-derived stem cells differentiate into functional neurons? Exp Neurol 193(2):273–278CrossRefPubMedGoogle Scholar
  33. 33.
    Yuen EC, Mobley WC (1996) Therapeutic potential of neurotrophic factors for neurological disorders. Ann Neurol 40(3):346–354CrossRefPubMedGoogle Scholar
  34. 34.
    Crigler L, Robey RC, Asawachaicharn A, Gaupp D, Phinney DG (2006) Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis. Exp Neurol 198(1):54–64CrossRefPubMedGoogle Scholar
  35. 35.
    Ye M, Chen S, Wang X, Qi C, Lu G, Liang L et al (2005) Glial cell line-derived neurotrophic factor in bone marrow stromal cells of rat. Neuroreport 16(6):581–584CrossRefPubMedGoogle Scholar
  36. 36.
    Yang HJ, Yang XY, Ba YC, Pang JX, Meng BL, Lin N et al (2009) Role of Neurotrophin 3 in spinal neuroplasticity in rats subjected to cord transection. Growth Factors 27(4):237–246CrossRefPubMedGoogle Scholar
  37. 37.
    Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE et al (2004) Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109:1292–1298CrossRefPubMedGoogle Scholar
  38. 38.
    Qu R, Li Y, Gao Q, Shen L, Zhang J, Liu Z et al (2007) Neurotrophic and growth factor gene expression profiling of mouse bone marrow stromal cells induced by ischemic brain extracts. Neuropathology 27:355–363CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Neurosurgery Institute of Guangdong, Key Laboratory on Brain Function Repair and Regeneration of Guangdong, Department of Neurosurgery, Zhujiang HospitalSouthern Medical UniversityGuangzhouChina
  2. 2.Department of Neurosurgery, The Third Affiliated HospitalGuangzhou Medical CollegeGuangzhouChina
  3. 3.Department of NeurosurgeryThe General Hospital of Beijing PLABeijingChina
  4. 4.Department of NeurosurgeryGuangdong Provincial Hospital of Traditional Chinese MedicineGuangzhouChina

Personalised recommendations