Advertisement

Neurochemical Research

, Volume 35, Issue 6, pp 940–946 | Cite as

Synergy of IL-23 and Th17 Cytokines: New Light on Inflammatory Bowel Disease

  • Wei Shen
  • Scott K. DurumEmail author
Original Paper

Abstract

Inflammatory bowel diseases (IBDs), including Crohn’s disease and ulcerative colitis, involve an interplay between host genetics and environmental factors including intestinal microbiota. Animal models of IBD have indicated that chronic inflammation can result from over-production of inflammatory responses or deficiencies in key negative regulatory pathways. Recent research advances in both T-helper 1 (Th1) and T-helper 17 (Th17) effect responses have offered new insights on the induction and regulation of mucosal immunity which is linked to the development of IBD. Th17 cytokines, such as IL-17 and IL-22, in combination with IL-23, play crucial roles in intestinal protection and homeostasis. IL-23 is expressed in gut mucosa and tends to orchestrate T-cell-independent pathways of intestinal inflammation as well as T cell dependent pathways mediated by cytokines produced by Th1 and Th17 cells. Th17 cells, generally found to be proinflammatory, have specific functions in host defense against infection by recruiting neutrophils and macrophages to infected tissues. Here we will review emerging data on those cytokines and their related regulatory networks that appear to govern the complex development of chronic intestinal inflammation; we will focus on how IL-23 and Th17 cytokines act coordinately to influence the balance between tolerance and immunity in the intestine.

Keywords

Inflammatory bowel disease (IBD) IL-23 IL-17A IL-17F IL-22 

References

  1. 1.
    Xavier RJ, Podolsky DK (2007) Unravelling the pathogenesis of inflammatory bowel disease. Nature 448:427–434CrossRefPubMedGoogle Scholar
  2. 2.
    Elson CO, Cong Y, Weaver CT et al (2007) Monoclonal anti-interleukin 23 reverses active colitis in a T cell-mediated model in mice. Gastroenterology 132:2359–2370CrossRefPubMedGoogle Scholar
  3. 3.
    Hue S, Ahern P, Buonocore S et al (2006) Interleukin-23 drives innate and T cell-mediated intestinal inflammation. J Exp Med 203:2473–2483CrossRefPubMedGoogle Scholar
  4. 4.
    Uhlig HH, McKenzie BS, Hue S et al (2006) Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 25:309–318CrossRefPubMedGoogle Scholar
  5. 5.
    Yen D, Cheung J, Scheerens H et al (2006) IL-23 is essential for T cell mediated colitis and promotes inflammation via IL-17 and IL-6. J Clin Invest 116:1310–1316CrossRefPubMedGoogle Scholar
  6. 6.
    Duerr RH, Taylor KD, Brant SR et al (2006) A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science 314:1461–1463CrossRefPubMedGoogle Scholar
  7. 7.
    Wilson NJ, Boniface K, Chan JR et al (2007) Cytokine profile and function of human interleukin 17-producing helper T cells. Nat Immunol 8:950–957CrossRefPubMedGoogle Scholar
  8. 8.
    Veldhoen M, Hocking RJ, Atkins CJ et al (2006) TGFbeta in the context of an inflammatory cytokine milieu supports de novo differentiation of IL-17-producing T cells. Immunity 24(2):179–189CrossRefPubMedGoogle Scholar
  9. 9.
    Veldhoen M, Hocking RJ, Flavell RA et al (2006) Signals mediated by transforming growth factor-beta initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol 7:1151–1156CrossRefPubMedGoogle Scholar
  10. 10.
    Volpe E, Servant N, Zollinger R et al (2008) Critical function for transforming growth factor-beta, interleukin 23 and proinflammatory cytokines in driving and modulating human T(H)-17 responses. Nat Immunol 9:650–657CrossRefPubMedGoogle Scholar
  11. 11.
    Izcue A, Coombes JL, Powrie F (2006) Regulatory T cells suppress systemic and mucosal immune activation to control intestinal inflammation. Immunol Rev 212:256–271CrossRefPubMedGoogle Scholar
  12. 12.
    Abreu MT, Fukata M, Arditi M (2005) TLR signalingin the gut in health and disease. J Immunol 174:4453–4460PubMedGoogle Scholar
  13. 13.
    Hamada H, Hiroi T, Nishiyama Y et al (2002) Identification of multiple isolated lymphoid follicles on the antimesenteric wall of the mouse small intestine. J Immunol 168:57–64PubMedGoogle Scholar
  14. 14.
    Newberry RD, Lorenz RG (2005) Organizing a mucosal defense. Immunol Rev 206:6–21CrossRefPubMedGoogle Scholar
  15. 15.
    Oppmann B, Lesley R, Blom B et al (2000) Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13:715–725CrossRefPubMedGoogle Scholar
  16. 16.
    Ahern PP, Izcue A, Maloy KJ et al (2008) The interleukin-23 axis in intestinal inflammation. Immunol Rev 226:147–159CrossRefPubMedGoogle Scholar
  17. 17.
    Parham C, Chirica M, Timans J et al (2002) A receptor for the heterodimeric cytokine IL-23 is composed of IL-12Rbeta1 and a novel cytokine receptor subunit, IL-23R. J Immunol 168:5699–5708PubMedGoogle Scholar
  18. 18.
    Kullberg MC, Jankovic D, Feng CG et al (2006) IL-23 plays a key role in Helicobacter hepaticus-induced T celldependent colitis. J Exp Med 203:2485–2494CrossRefPubMedGoogle Scholar
  19. 19.
    Becker C, Dornhoff H, Neufert C et al (2006) IL-23 Cross-Regulates IL-12 Production in T Cell-Dependent Experimental Colitis. J Immunol 177:2760–2764PubMedGoogle Scholar
  20. 20.
    Dong C (2008) TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 8:337–348CrossRefPubMedGoogle Scholar
  21. 21.
    Nurieva R, Yang XO, Martinez G et al (2007) Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature 448:480–483CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou L, Ivanov II, Spolski R et al (2007) IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nat Immunol 8:967–974CrossRefPubMedGoogle Scholar
  23. 23.
    Williams IR (2006) CCR6 and CCL20: partners in intestinal immunity and lymphorganogenesis. Ann NY Acad Sci 1072:52–61CrossRefPubMedGoogle Scholar
  24. 24.
    Fort MM, Cheung J, Yen D et al (2001) IL-25 induces IL-4, IL-5, and IL-13 and Th2-associated pathologies in vivo. Immunity 15:985–995CrossRefPubMedGoogle Scholar
  25. 25.
    Yao Z, Fanslow WC, Seldin MF et al (1995) Herpesvirus saimiri encodes a new cytokine, IL-17, which binds to a novel cytokine receptor. Immunity 3:811–821CrossRefPubMedGoogle Scholar
  26. 26.
    Toy D, Kugler D, Wolfson M et al (2006) Cutting edge: Interleukin-17 signals through a heteromeric receptor complex. J Immunol 177:36–39PubMedGoogle Scholar
  27. 27.
    Park H, Li Z, Yang XO et al (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin-17. Nat Immunol 6:1133–1141CrossRefPubMedGoogle Scholar
  28. 28.
    Reiko I, Masakazu K, Masaharu S et al (2008) Involvement of IL-17A in the pathogenesis of DSS-induced colitis in mice Biochem. Biophys Res Commun 377:12–16CrossRefGoogle Scholar
  29. 29.
    Zhang Z, Zheng M, Bindas J et al (2006) Critical role of IL-17 receptor signaling in acute TNBS-induced colitis, Inflamm. Bowel Dis 12:382–388CrossRefGoogle Scholar
  30. 30.
    O’Connor W Jr, Kamanaka M, Booth CJ et al (2009) A protective function for interleukin 17A in T cell-mediated intestinal inflammation. Nat Immunol 10:603–609CrossRefPubMedGoogle Scholar
  31. 31.
    Ogawa A, Andoh A, Araki Y et al (2004) Neutralization of interleukin-17 aggravates dextran sulfate sodium-induced colitis in mice. Clin Immunol 110:55–62CrossRefPubMedGoogle Scholar
  32. 32.
    Langrish CL, Chen Y, Blumenschein WM et al (2005) IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med 201:233–240CrossRefPubMedGoogle Scholar
  33. 33.
    Chang SH, Dong C (2007) A novel heterodimeric cytokine consisting of IL-17 and IL-17F regulates inflammatory responses. Cell Res 17:435–440PubMedGoogle Scholar
  34. 34.
    Kuestner RE, Taft DW, Haran A et al (2007) Identification of the IL-17 receptor related molecule IL-17RC as the receptor for IL-17F. J Immunol 179:5462–5473PubMedGoogle Scholar
  35. 35.
    Wolk X, Kunz S, Witte E et al (2004) IL-22 increases the innate immunity of tissues. Immunity 21:241–254CrossRefPubMedGoogle Scholar
  36. 36.
    Zheng Y, Danilenko DM, Valdez P et al (2007) Interleukin-22, a TH17 cytokine, mediates IL-23-induced dermal inflammation and acanthosis. Nature 445:648–651CrossRefPubMedGoogle Scholar
  37. 37.
    Kreymborg K, Etzensperger R, Dumoutier L et al (2007) IL-22 is expressed by TH17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. J Immunol 179:8098–8104PubMedGoogle Scholar
  38. 38.
    Sugimoto X, Ogawa A, Mizoguchi E et al (2008) IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Invest 118:534–544PubMedGoogle Scholar
  39. 39.
    Zheng X, Valdez PA, Danilenko DM et al (2008) Interleukin 22 mediates early host defense against attaching and effacing bacterial pathogens. Nat Med 14:282–289CrossRefPubMedGoogle Scholar
  40. 40.
    Sanos X, Bui VL, Mortha A et al (2009) RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22-producing NKp46+ cells. Nat Immunol 10:83–91CrossRefPubMedGoogle Scholar
  41. 41.
    Malmberg K, Ljunggren H (2009) Spotlight on IL-22-producing NK cell receptor expressing mucosal lymphocytes. Nat Immunol 10:11–12CrossRefPubMedGoogle Scholar
  42. 42.
    Izcue A, Hue S, Buonocore S et al (2008) Interleukin-23 restrains regulatory T cell activity to drive T cell-dependent colitis. Immunity 28:559–570CrossRefPubMedGoogle Scholar
  43. 43.
    Sutton C, Brereton C, Keogh B et al (2006) A crucial role for interleukin (IL)-1 in the induction of IL-17-producing T cells that mediate autoimmune encephalomyelitis. J Exp Med 203:1685–1691CrossRefPubMedGoogle Scholar
  44. 44.
    Yang XO, Chang SH, Park H et al (2008) Regulation of inflammatory responses by IL-17F. J Exp Med 205:1063–1075CrossRefPubMedGoogle Scholar
  45. 45.
    Korn T, Bettelli E, Gao W et al (2007) IL-21 initiates an alternative pathway to induce proinflammatory T(H)17 cells. Nature 448:484–487CrossRefPubMedGoogle Scholar
  46. 46.
    Chen Z, Laurence A, Kanno Y et al (2006) Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci USA 103:8137–8142CrossRefPubMedGoogle Scholar
  47. 47.
    Ivanov II, McKenzie BS, Zhou L et al (2006) The orphan nuclear receptor RORgammat directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell 126:1121–1133CrossRefPubMedGoogle Scholar
  48. 48.
    Zhou L, Lopes JE, Chong MM et al (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453:236–240CrossRefPubMedGoogle Scholar

Copyright information

© US Government 2009

Authors and Affiliations

  1. 1.Laboratory of Molecular Immunoregulation, Cancer Inflammation Program, Center for Cancer ResearchNational Cancer Institute, National Institutes of HealthFrederickUSA

Personalised recommendations