Neurochemical Research

, Volume 35, Issue 3, pp 495–502

Intrastriatal Transplantation of GDNF-engineered BMSCs and its neuroprotection in Lactacystin-induced Parkinsonian Rat Model

  • Jianjun Wu
  • Wenbo Yu
  • Yan Chen
  • Yaru Su
  • Zhengtong Ding
  • Huimin Ren
  • Yuping Jiang
  • Jian Wang
Original Paper


The potential value of glial cell line-derived neurotrophic factor (GDNF) in treating Parkinson's disease (PD) remains controversial. In order to evaluate the therapeutic effect of GDNF-engineered bone marrow stromal cells (BMSCs) in parkinsonian rat model, GDNF-BMSCs and LacZ-BMSCs were transplanted into striatum and followed by Lactacystin lesioning at median forebrain bundles 1 week later. We observed that the intrastriatal transplantation of GDNF-BMSCs could significantly rescue the dopaminergic neurons from lactacystin-induced neurotoxicity with regard to behavioral recovery, tyrosine hydroxylase level in nigra and striatum, and striatal dopamine level. We interpret the outcomes that intrastriatal transplantation of GDNF-BMSCs might be beneficial in the treatment of PD.


Parkinson’s disease Glial cell line-derived neurotrophic factor Lentivirus Gene therapy Bone marrow stromal cells Lactacystin 


  1. 1.
    Kordower JH, Kanaan NM, Chu Y et al (2006) Failure of proteasome inhibitor administration to provide a model of Parkinson’s disease in rats and monkeys. Ann Neurol 60(2):264–268CrossRefPubMedGoogle Scholar
  2. 2.
    Manning-Bog AB, Reaney SH, Chou VP et al (2006) Lack of nigrostriatal pathology in a rat model of proteasome inhibition. Ann Neurol 60(2):256–260CrossRefPubMedGoogle Scholar
  3. 3.
    McNaught KS, Olanow CW (2006) Proteasome inhibitor-induced model of Parkinson’s disease. Ann Neurol 60(2):243–247CrossRefPubMedGoogle Scholar
  4. 4.
    McNaught KS, Perl DP, Brownell AL et al (2004) Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson’s disease. Ann Neurol 56(1):149–162CrossRefPubMedGoogle Scholar
  5. 5.
    Zeng BY, Bukhatwa S, Hikima A et al (2006) Reproducible nigral cell loss after systemic proteasomal inhibitor administration to rats. Ann Neurol 60(2):248–252CrossRefPubMedGoogle Scholar
  6. 6.
    Chung KK, Dawson VL, Dawson TM (2001) The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends Neurosci 24(11 Suppl):S7–S14CrossRefPubMedGoogle Scholar
  7. 7.
    Dietz GP, Valbuena PC, Dietz B et al (2006) Application of a blood-brain-barrier-penetrating form of GDNF in a mouse model for Parkinson’s disease. Brain Res 1082(1):61–66CrossRefPubMedGoogle Scholar
  8. 8.
    Smith MP, Cass WA (2007) GDNF reduces oxidative stress in a 6-hydroxydopamine model of Parkinson’s disease. Neurosci Lett 412(3):259–263CrossRefPubMedGoogle Scholar
  9. 9.
    Su YR, Wang J, Wu JJ et al (2007) Overexpression of lentivirus-mediated glial cell line-derived neurotrophic factor in bone marrow stromal cells and its neuroprotection for the PC12 cells damaged by lactacystin. Neurosci Bull 23(2):67–74CrossRefPubMedGoogle Scholar
  10. 10.
    Zhang HL, Wu JJ, Ren HM et al (2007) Therapeutic effect of microencapsulated porcine retinal pigmented epithelial cells transplantation on rat model of Parkinson’s disease. Neurosci Bull 23(3):137–144CrossRefPubMedGoogle Scholar
  11. 11.
    McNaught KS, Belizaire R, Isacson O et al (2003) Altered proteasomal function in sporadic Parkinson’s disease. Exp Neurol 179(1):38–46CrossRefPubMedGoogle Scholar
  12. 12.
    Tofaris GK, Razzaq A, Ghetti B et al (2003) Ubiquitination of alpha-synuclein in Lewy bodies is a pathological event not associated with impairment of proteasome function. J Biol Chem 278(45):44405–44411CrossRefPubMedGoogle Scholar
  13. 13.
    Galvin JE, Lee VM, Trojanowski JQ (2001) Synucleinopathies: clinical and pathological implications. Arch Neurol 58(2):186–190CrossRefPubMedGoogle Scholar
  14. 14.
    Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840CrossRefPubMedGoogle Scholar
  15. 15.
    Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047CrossRefPubMedGoogle Scholar
  16. 16.
    McNaught KS, Mytilineou C, Jnobaptiste R et al (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81(2):301–306CrossRefPubMedGoogle Scholar
  17. 17.
    Rideout H, Lang-Rollin I, Savalle M et al (2005) Dopaminergic neurons in rat ventral midbrain cultures undergo selective apoptosis and form inclusions, but do not up-regulate iHSP70, following proteasomal inhibition. J Neurochem 93(5):1304–1313CrossRefPubMedGoogle Scholar
  18. 18.
    Deumens R, Blokland A, Prickaerts J (2002) Modeling Parkinson’s disease in rats: an evaluation of 6-OHDA lesions of the nigrostriatal pathway. Exp Neurol 175(2):303–317CrossRefPubMedGoogle Scholar
  19. 19.
    Pan T, Zhu W, Zhao H et al (2008) Nurr1 deficiency predisposes to lactacystin-induced dopaminergic neuron injury in vitro and in vivo. Brain Res 1222:222–229CrossRefPubMedGoogle Scholar
  20. 20.
    Deierborg T, Soulet D, Roybon L et al (2008) Emerging restorative treatments for Parkinson’s disease. Prog Neurobiol 85(4):407–432CrossRefPubMedGoogle Scholar
  21. 21.
    Gash DM, Zhang Z, Ovadia A et al (1996) Functional recovery in parkinsonian monkeys treated with GDNF. Nature 380(6571):252–255CrossRefPubMedGoogle Scholar
  22. 22.
    Oiwa Y, Nakai K, Itakura T (2006) Histological effects of intraputaminal infusion of glial cell line-derived neurotrophic factor in Parkinson disease model macaque monkeys. Neurol Med Chir (Tokyo) 46(6):267–275 discussion 275–266CrossRefGoogle Scholar
  23. 23.
    Kirik D, Georgievska B, Bjorklund A (2004) Localized striatal delivery of GDNF as a treatment for Parkinson disease. Nat Neurosci 7(2):105–110CrossRefPubMedGoogle Scholar
  24. 24.
    Costa S, Iravani MM, Pearce RK et al (2001) Glial cell line-derived neurotrophic factor concentration dependently improves disability and motor activity in MPTP-treated common marmosets. Eur J Pharmacol 412(1):45–50CrossRefPubMedGoogle Scholar
  25. 25.
    Kirik D, Rosenblad C, Bjorklund A et al (2000) Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 20(12):4686–4700PubMedGoogle Scholar
  26. 26.
    Lo Bianco C, Deglon N, Pralong W et al (2004) Lentiviral nigral delivery of GDNF does not prevent neurodegeneration in a genetic rat model of Parkinson’s disease. Neurobiol Dis 17(2):283–289CrossRefPubMedGoogle Scholar
  27. 27.
    Dezawa M, Kanno H, Hoshino M et al (2004) Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J Clin Invest 113(12):1701–1710PubMedGoogle Scholar
  28. 28.
    Kordower JH, Chu Y, Hauser RA et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506CrossRefPubMedGoogle Scholar
  29. 29.
    Dezawa M, Ishikawa H, Hoshino M et al (2005) Potential of bone marrow stromal cells in applications for neuro-degenerative, neuro-traumatic and muscle degenerative diseases. Curr Neuropharmacol 3(4):257–266CrossRefPubMedGoogle Scholar
  30. 30.
    Mendez I, Sanchez-Pernaute R, Cooper O et al (2005) Cell type analysis of functional fetal dopamine cell suspension transplants in the striatum and substantia nigra of patients with Parkinson’s disease. Brain 128(Pt 7):1498–1510CrossRefPubMedGoogle Scholar
  31. 31.
    Winkler C, Kirik D, Bjorklund A (2005) Cell transplantation in Parkinson’s disease: how can we make it work? Trends Neurosci 28(2):86–92CrossRefPubMedGoogle Scholar
  32. 32.
    Bahat-Stroomza M, Barhum Y, Levy YS et al (2009) Induction of adult human bone marrow mesenchymal stromal cells into functional astrocyte-like cells: potential for restorative treatment in Parkinson’s disease. J Mol Neurosci 39(1–2):199–210CrossRefPubMedGoogle Scholar
  33. 33.
    Chen CJ, Ou YC, Liao SL et al (2007) Transplantation of bone marrow stromal cells for peripheral nerve repair. Exp Neurol 204(1):443–453CrossRefPubMedGoogle Scholar
  34. 34.
    Garcia R, Aguiar J, Alberti E et al (2004) Bone marrow stromal cells produce nerve growth factor and glial cell line-derived neurotrophic factors. Biochem Biophys Res Commun 316(3):753–754CrossRefPubMedGoogle Scholar
  35. 35.
    Rubio D, Garcia-Castro J, Martin MC et al (2005) Spontaneous human adult stem cell transformation. Cancer Res 65(8):3035–3039PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jianjun Wu
    • 1
  • Wenbo Yu
    • 1
  • Yan Chen
    • 1
  • Yaru Su
    • 1
  • Zhengtong Ding
    • 1
  • Huimin Ren
    • 1
  • Yuping Jiang
    • 1
  • Jian Wang
    • 1
  1. 1.Department of NeurologyHuashan Hospital Affiliated to Fudan UniversityShanghaiPeople’s Republic of China

Personalised recommendations