Neurochemical Research

, Volume 35, Issue 6, pp 899–908

Impaired Synthesis of Erythropoietin, Glutamine Synthetase and Metallothionein in the Skin of NOD/SCID/γcnull and Foxn1 nu/nu Mice with Misbalanced Production of MHC Class II Complex

  • L. Danielyan
  • S. Verleysdonk
  • M. Buadze
  • C. H. Gleiter
  • G. H. Buniatian
Original Paper


Most skin pathologies are characterized by unbalanced synthesis of major histocompatability complex II (MHC-II) proteins. Healthy skin keratinocytes simultaneously produce large amounts of MHC-II and regeneration-supporting proteins, e.g. erythropoietin (EPO), EPO receptor (EPOR), glutamine synthetase (GS) and metallothionein (MT). To investigate the level of regeneration-supporting proteins in the skin during misbalanced production of MHC-II, skin sections from nonobese diabetic/severe combined immunodeficient (NOD/SCID)/γcnull and or Foxn1 nu/nu mice which are a priory known to under- and over-express MHC II, respectively, were used. Double immunofluorescence analysis of NOD/SCID/γcnull skin sections showed striking decrease in expression of MHC-II, EPO, GS and MT. In Foxn1 nu/nu mouse skin, GS was strongly expressed in epidermis and in hair follicles (HF), which lacked EPO. In nude mouse skin EPO and MHC-II were over-expressed in dermal fibroblasts and they were completely absent from cortex, channel, medulla and keratinocytes surrounding the HF, suggest a role for EPO in health and pathology of hair follicle. The level of expression of EPO and GS in both mutant mice was confirmed by results of Western blot analyses. Strong immunoresponsiveness of EPOR in the hair channels of NOD/SCID/γcnull mouse skin suggests increased requirements of skin cells for EPO and possible benefits of exogenous EPO application during disorders of immune system accompanied by loss MHC-II in skin cells.


Blood-tissue barrier EPO receptor Glial fibrillary acidic protein Immunodeficiency Keratinocytes Nudity 



Central nervous system


Confocal laser scanning




Erythopoietin receptor


Glial fibrillary acidic protein


Glial fibrillary acidic protein producing cells


Glutamine synthetase


Monoclonal antibody


Major histocompatibility class II complex




Nonobese diabetic/severe combined immunodeficient nude/nude


Outer sheet of hair follicle


Polyclonal antibody


Polyacrylamide gel electrophoresis


Phosphate-buffered saline


Smooth muscle alpha-actin


  1. 1.
    Danielyan L, Tolstonog G, Traub P et al (2007) Colocalization of glial fibrillary acidic protein, metallothionein, and MHC II in human, rat, NOD/SCID, and nude mouse skin keratinocytes and fibroblasts. J Invest Dermatol 127:555–563CrossRefPubMedGoogle Scholar
  2. 2.
    Hoefakker S, Balk HP, Boersma WJ et al (1995) Migration of human antigen-presenting cells in a human skin graft onto nude mice model after contact sensitization. Immunology 86:296–303PubMedGoogle Scholar
  3. 3.
    Fan L, Busser BW, Lifsted TQ et al (2003) Antigen presentation by keratinocytes directs autoimmune skin disease. Proc Natl Acad Sci USA 100:3386–3391CrossRefPubMedGoogle Scholar
  4. 4.
    Christoph T, Müller-Röver S, Audring H et al (2000) The human hair follicle immune system: cellular composition and immune privilege. Br J Dermatol 142:862–883CrossRefPubMedGoogle Scholar
  5. 5.
    Galkowska H, Olszewski WL, Wojewodzka U (2005) Expression of natural antimicrobial peptide beta-defensin-2 and Langerhans cell accumulation in epidermis from human non-healing leg ulcers. Folia Histochem Cytobiol 43:133–136PubMedGoogle Scholar
  6. 6.
    Ansari AA (1993) A possible role of the MHC-associated invariant chain in rheumatoid arthritis. Semin Arthritis Rheum 23:193–197CrossRefPubMedGoogle Scholar
  7. 7.
    Wittmann M, Purwar R, Hartmann C et al (2005) Human keratinocytes respond to interleukin-18: implication for the course of chronic inflammatory skin diseases. J Invest Dermatol 124:1225–1233CrossRefPubMedGoogle Scholar
  8. 8.
    Wucherpfennig KW, Yu B, Bhol K et al (1995) Structural basis for major histocompatibility complex (MHC)-linked susceptibility to autoimmunity: charged residues of a single MHC binding pocket confer selective presentation of self-peptides in pemphigus vulgaris. Proc Natl Acad Sci USA 92:11935–11939CrossRefPubMedGoogle Scholar
  9. 9.
    Geburek F, Ohnesorge B, Deegen E et al (2005) Alterations of epidermal proliferation and cytokeratin expression in skin biopsies from heavy draught horses with chronic pastern dermatitis. Vet Dermatol 16:373–384CrossRefPubMedGoogle Scholar
  10. 10.
    Smith MD, Roberts-Thomson PJ (1990) Lymphocyte surface marker expression in rheumatic diseases: evidence for prior activation of lymphocytes in vivo. Ann Rheum Dis 49:81–87CrossRefPubMedGoogle Scholar
  11. 11.
    Abrams JR, Kelley SL, Hayes E et al (2000) Blockade of T lymphocyte costimulation with cytotoxic T lymphocyte-associated antigen 4-immunoglobulin (CTLA4Ig) reverses the cellular pathology of psoriatic plaques, including the activation of keratinocytes, dendritic cells, and endothelial cells. J Exp Med 192:681–694CrossRefPubMedGoogle Scholar
  12. 12.
    Huisinga M, Failing K, Reinacher M (2007) MHC class II expression by follicular keratinocytes in canine demodicosis-an immunohistochemical study. Vet Immunol Immunopathol 118:210–220CrossRefPubMedGoogle Scholar
  13. 13.
    Gilhar A, Kalish RS (2006) Alopecia areata: a tissue specific autoimmune disease of the hair follicle. Autoimmun Rev 5:64–69CrossRefPubMedGoogle Scholar
  14. 14.
    Barahmani N, de Andrade M, Slusser JP et al (2008) Human leukocyte antigen class II alleles are associated with risk of alopecia areata. J Invest Dermatol 128:240–243CrossRefPubMedGoogle Scholar
  15. 15.
    Nakamura M, Jo J, Tabata Y, Ishikawa O (2008) Controlled delivery of T-box21 small interfering RNA ameliorates autoimmune alopecia (Alopecia Areata) in a C3H/HeJ mouse model. Am J Pathol 172:650–658CrossRefPubMedGoogle Scholar
  16. 16.
    Shohat M, Mimouni D, Ben-Amitai D, Sredni B, Sredni D, Shohat B, David M (2005) In vitro cytokine profile in childhood alopecia areata and the immunomodulatory effects of AS-101. Clin Exp Dermatol 30:432–434CrossRefPubMedGoogle Scholar
  17. 17.
    Schäffer M, Bongartz M, Hoffmann W et al (2007) MHC-class-II-deficiency impairs wound healing. J Surg Res 138:100–105CrossRefPubMedGoogle Scholar
  18. 18.
    Boutin AT, Weidemann A et al (2008) Epidermal sensing of oxygen is essential for systemic hypoxic response. Cell 133:223–234CrossRefPubMedGoogle Scholar
  19. 19.
    Wang B, Amerio P, Sauder DN (1999) Role of cytokines in epidermal Langerhans cell migration. J Leukoc Biol 66:33–39PubMedGoogle Scholar
  20. 20.
    Semenza GL (2008) O2 sensing: only skin deep? Cell 133:206–208CrossRefPubMedGoogle Scholar
  21. 21.
    Danielyan L, Zellmer S, Sickinger S et al (2009) Keratinocytes as depository of ammonium-inducible glutamine synthetase: age- and anatomy-dependent distribution in human and rat skin. PLoS ONE 4:e4416CrossRefPubMedGoogle Scholar
  22. 22.
    Li W, Maeda Y, Yuan RR et al (2004) Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann Neurol 56:767–777CrossRefPubMedGoogle Scholar
  23. 23.
    Soliz J, Joseph V, Soulage C et al (2005) Erythropoietin regulates hypoxic ventilation in mice by interacting with brainstem and carotid bodies. J Physiol 568:559–571CrossRefPubMedGoogle Scholar
  24. 24.
    Knabe W, Siren AL, Ehrenreich H et al (2005) Expression patterns of erythropoietin and its receptor in the developing spinal cord and dorsal root ganglia. Anat Embryol (Berl) 210:209–219CrossRefGoogle Scholar
  25. 25.
    Nagai A, Nakagawa E, Choi HB et al (2001) Erythropoietin and erythropoietin receptors in human CNS neurons, astrocytes, microglia, and oligodendrocytes grown in culture. J Neuropathol Exp Neurol 60:386–392PubMedGoogle Scholar
  26. 26.
    Grasso G, Sfacteria A, Passalacqua M et al (2005) Erythropoietin and erythropoietin receptor expression after experimental spinal cord injury encourages therapy by exogenous erythropoietin. Neurosurgery 56:821–827CrossRefPubMedGoogle Scholar
  27. 27.
    Huang Y, Xiao S, Zhang D (1998) Effects of erythropoietin or nitric oxide synthesis inhibitor on hyperdynamic circulatory state in cirrhotic rats. Zhonghua Yi Xue Za Zhi 78:139–142PubMedGoogle Scholar
  28. 28.
    Srisawat N, Manotham K, Eiam-Ong S et al (2008) Erythropoietin and its non-erythropoietic derivative: do they ameliorate renal tubulointerstitial injury in ureteral obstruction? Int J Urol 15:1011–1017PubMedGoogle Scholar
  29. 29.
    Fukushima Y, Yanagisawa M, Yasuda T et al (1989) Erythropoietic activity in culture media conditioned by rat mesangial cells. Tohoku J Exp Med 157:153–162CrossRefPubMedGoogle Scholar
  30. 30.
    Maxwell PH, Ferguson DJ, Osmond MK et al (1994) Expression of a homologously recombined erythopoietin-SV40 T antigen fusion gene in mouse liver: evidence for erythropoietin production by Ito cells. Blood 84:1823–1830PubMedGoogle Scholar
  31. 31.
    Bodó E, Kromminga A, Funk W et al (2007) Human hair follicles are an extrarenal source and a nonhematopoietic target of erythropoietin. FASEB J. 21:3346–3354CrossRefPubMedGoogle Scholar
  32. 32.
    Haroon ZA, Amin K, Jiang X et al (2003) A novel role for erythropoietin during fibrin-induced wound-healing response. Am J Pathol 163:993–1000PubMedGoogle Scholar
  33. 33.
    Galeano M, Altavilla D, Cucinotta D et al (2004) Recombinant human erythropoietin stimulates angiogenesis and wound healing in the genetically diabetic mouse. Diabetes 53:2509–2517CrossRefPubMedGoogle Scholar
  34. 34.
    Galeano M, Altavilla D, Bitto A et al (2006) Recombinant human erythropoietin improves angiogenesis and wound healing in experimental burn wounds. Crit Care Med 34:1139–1146CrossRefPubMedGoogle Scholar
  35. 35.
    Wang T, Rumbaugh JA, Nath A et al (2006) Viruses and the brain: from inflammation to dementia. Clin Sci (Lond) 110:393–407CrossRefGoogle Scholar
  36. 36.
    Danielyan L, Mueller L, Proksch B et al (2005) Similar protective effects of BQ-123 and erythropoietin on survival of neural cells and generation of neurons upon hypoxic injury. Eur J Cell Biol 84:907–913CrossRefPubMedGoogle Scholar
  37. 37.
    Zandman-Goddard G, Shoenfeld Y (2002) HIV and autoimmunity. Autoimmun Rev 1:329–337CrossRefPubMedGoogle Scholar
  38. 38.
    Stingl G, Rappersberger K, Tschachler E et al (1990) Langerhans cells in HIV-1 infection. J Am Acad Dermatol 22:1210–1217CrossRefPubMedGoogle Scholar
  39. 39.
    Rico MJ, Kory WP, Gould EW et al (1987) Interface dermatitis in patients with the acquired immunodeficiency syndrome. J Am Acad Dermatol 16:1209–1218CrossRefPubMedGoogle Scholar
  40. 40.
    Kim CM, Vogel J, Jay G et al (1992) The HIV tat gene transforms human keratinocytes. Oncogene 7:1525–1529PubMedGoogle Scholar
  41. 41.
    Memar OM, Arany I, Tyring SK (1995) Skin-associated lymphoid tissue in human immunodeficiency virus-1, human papillomavirus, and herpes simplex virus infections. J Invest Dermatol 105:99S–104SCrossRefPubMedGoogle Scholar
  42. 42.
    Takahashi Y, Ogra Y, Suzuki KT (2005) Nuclear trafficking of metallothionein requires oxidation of a cytosolic partner. J Cell Physiol 202:563–569CrossRefPubMedGoogle Scholar
  43. 43.
    Russo AF (2008) Anti-metallothionein IgG and levels of metallothionein in autistic families. Swiss Med Wkly 138:70–77PubMedGoogle Scholar
  44. 44.
    Watabe S, Hasegawa H, Takimoto K et al (1995) Possible function of SP-22, a substrate of mitochondrial ATP-dependent protease, as a radical scavenger. Biochem Biophys Res Commun 213:1010–1016CrossRefPubMedGoogle Scholar
  45. 45.
    Aksenov MY, Aksenova MV et al (1997) Oxidative modification of glutamine synthetase by amyloid beta peptide. Free Radic Res 27:267–281CrossRefPubMedGoogle Scholar
  46. 46.
    Seth A, Basuroy S, Sheth P et al (2004) L-Glutamine ameliorates acetaldehyde-induced increase in paracellular permeability in Caco-2 cell monolayer. Am J Physiol Gastrointest Liver Physiol 287:G510–G517CrossRefPubMedGoogle Scholar
  47. 47.
    Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182CrossRefPubMedGoogle Scholar
  48. 48.
    Mecklenburg L, Nakamura M, Sundberg JP et al (2001) The nude mouse skin phenotype: the role of Foxn1 in hair follicle development and cycling. Exp Mol Pathol 71:171–178CrossRefPubMedGoogle Scholar
  49. 49.
    Mecklenburg L, Tychsen B, Paus R (2005) Learning from nudity: lessons from the nude phenotype. Exp Dermatol 14:797–810CrossRefPubMedGoogle Scholar
  50. 50.
    Brissette JL, Li J, Kamimura J et al (1996) The product of the mouse nude locus, Whn, regulates the balance between epithelial cell growth and differentiation. Genes Dev 10:2212–2221CrossRefPubMedGoogle Scholar
  51. 51.
    Nagel W, Hartmann H-J, Weser U (1990) Monoclonal antibodies to monomeric rat liver metallothionein-I: the immunoreactivity of lysine residues in metallothionein. Immunol Lett 26:291–295CrossRefPubMedGoogle Scholar
  52. 52.
    Jaenicke L, Berson W (1977) Glutamine synthetase from pig brain: binding of adenosine thiphosphate. Hoppe-Seyler’s Z Physiol Chem 358:883–889PubMedGoogle Scholar
  53. 53.
    Buniatian GH, Hartmann H-J, Traub P et al (2001) Acquisition of blood-tissue barrier supporting features by hepatic stellate cells astrocytes of myofibroblastic phenotype. Inverse dynamics of metallothionein and glial fibrillary acidic protein expression. Neurochem Int 38:373–383CrossRefPubMedGoogle Scholar
  54. 54.
    Buniatian GH, Hartmann H-J, Traub P et al (2002) Glial fibrillary acidic protein-positive cells of the kidney are capable of raising a protective biochemical barrier similar to astrocytes: expression of metallothionein in podocytes. Anat Rec 267:296–306CrossRefPubMedGoogle Scholar
  55. 55.
    Reizis B, Eisenstein M, Bockoba J et al (1997) Molecular characterization of the diabetes-associated mouse MHC class II protein, I-Ag7. Int Immunol 9:43–51CrossRefPubMedGoogle Scholar
  56. 56.
    Ueda T, Yoshino H, Kobayashi K et al (2000) Hematopoietic repopulating ability of cord blood CD34(+) cells in NOD/Shi-scid mice. Stem Cells 18:204–213CrossRefPubMedGoogle Scholar
  57. 57.
    Bröcker EB, Echternacht-Happle K, Hamm H et al (1987) Abnormal expression of class I and class II major histocompatibility antigens in alopecia areata: modulation by topical immunotherapy. J Invest Dermatol 88:564–568CrossRefPubMedGoogle Scholar
  58. 58.
    Köpf-Maier P, Mboneko VF, Merker HJ (1990) Nude mice are not hairless. A morphological study. Acta Anat (Basel) 139:178–190CrossRefGoogle Scholar
  59. 59.
    de Preval C, Lisowska-Grospierre B, Loche M et al (1985) A trans-acting class II regulatory gene unlinked to the MHC controls expression of HLA class II genes. Nature (Lond) 318:291–293CrossRefGoogle Scholar
  60. 60.
    Dröge W (2006) Redox regulation in anabolic and catabolic processes. Curr Opin Clin Nutr Metab Care. 9:190–195CrossRefPubMedGoogle Scholar
  61. 61.
    Stephens LA, Thomas HE, Kay TW (1997) Protection of NIT-1 pancreatic beta-cells from immune attack by inhibition of NF-kappaB. J Autoimmun 10:293–298CrossRefPubMedGoogle Scholar
  62. 62.
    Isogai R, Takahashi M, Aisu K et al (2006) The receptor for erythropoietin is present on cutaneous mast cells. Arch Dermatol Res 297:389–394CrossRefPubMedGoogle Scholar
  63. 63.
    Lipski S, Grabbe J, Henz BM (1996) Absence of MHC class II antigen on mast cells at sites of inflammation in human skin. Exp Dermatol 5:120–124CrossRefPubMedGoogle Scholar
  64. 64.
    Stephens LA, Thomas HE, Kay TW (1997) Protection of NIT-1 pancreatic beta-cells from immune attack by inhibition of NF-kappaB. J Autoimmun 10:293–298CrossRefPubMedGoogle Scholar
  65. 65.
    Figueroa YG, Chan AK et al (2002) NF-kappaB plays a key role in hypoxia inducible factor-1-regulated erythropoietin gene expression. Exp Hematol 30:1419–1427CrossRefPubMedGoogle Scholar
  66. 66.
    Zhande R, Karsan A (2007) Erythropoietin promotes survival of primary human endothelial cells through PI3 K-dependent, NF-kappaB-independent upregulation of Bcl-xL. Am J Physiol Heart Circ Physiol 292:H2467–H2474CrossRefPubMedGoogle Scholar
  67. 67.
    Chen J, Connor KM, Aderman CM et al (2008) Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 118:526–533PubMedGoogle Scholar
  68. 68.
    Jelkmann W (2007) Control of erythropoietin gene expression and its use in medicine. Methods Enzymol 435:179–197CrossRefPubMedGoogle Scholar
  69. 69.
    Jia HB, Jin Y, Ji Q et al (2009) Effects of recombinant human erythropoietin on neuropathic pain and cerebral expressions of cytokines and nuclear factor-kappa B. Can J Anaesth 56:597–603CrossRefPubMedGoogle Scholar
  70. 70.
    Erbil Y, Oztezcan S, Giriş M, Barbaros U, Olgaç V, Bilge H, Küçücük H, Toker G (2005) The effect of glutamine on radiation-induced organ damage. Life Sci 78:376–382CrossRefPubMedGoogle Scholar
  71. 71.
    Singleton KD, Beckey VE, Wischmeyer PE (2005) Glutamine prevents activation of NF-κB and stress kinase pathways, attenuates inflammatory cytokine release, and prevents acute respiratory distress syndrome (ARDS) following sepsis. Shock 24:583–589CrossRefPubMedGoogle Scholar
  72. 72.
    Mita M, Satoh M, Shimada A et al (2008) Metallothionein is a crucial protective factor against Helicobacter pylori-induced gastric erosive lesions in a mouse model. Am J Physiol Gastrointest Liver Physiol 294:G877–G884CrossRefPubMedGoogle Scholar
  73. 73.
    Papouli E, Defais M, Larminat F (2002) Overexpression of metallothionein-II sensitizes rodent cells to apoptosis induced by DNA cross-linking agent through inhibition of NF-kappa B activation. J Biol Chem. 277:4764–4769CrossRefPubMedGoogle Scholar
  74. 74.
    Mita M, Imura N, Kumazawa Y et al (2002) Suppressed proliferative response of spleen T cells from metallothionein null mice. Microbiol Immunol 46:101–107PubMedGoogle Scholar
  75. 75.
    Cherian MG, Kang YJ (2006) Metallothionein and liver cell regeneration. Exp Biol Med (Maywood) 231:138–144Google Scholar
  76. 76.
    Lansdown AB (2002) Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair Regen 10:130–132CrossRefPubMedGoogle Scholar
  77. 77.
    Homoncik M, Jilma-Stohlawetz P, Schmid M et al (2004) Erythropoietin increases platelet reactivity and platelet counts in patients with alcoholic liver cirrhosis: a randomized, double-blind, placebo-controlled study. Aliment Pharmacol Ther 20:437–443CrossRefPubMedGoogle Scholar
  78. 78.
    Sulkowski MS (2003) Anemia in the treatment of hepatitis C virus infection. Clin Infect Dis 37:S315–S322CrossRefPubMedGoogle Scholar
  79. 79.
    Jiang Y, Kang YJ (2004) Metallothionein gene therapy for chemical-induced liver fibrosis in mice. Mol Ther 10:1130–1139CrossRefPubMedGoogle Scholar
  80. 80.
    Savino C, Pedotti R, Baggi F et al (2006) Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. J Neuroimmunol 172:27–37CrossRefPubMedGoogle Scholar
  81. 81.
    Penkowa M, Hidalgo J (2000) Metallothionein I + II expression and their role in experimental autoimmune encephalomyelitis. Glia 32:247–263CrossRefPubMedGoogle Scholar
  82. 82.
    Abdel-Mageed AB, Zhao F, Rider BJ et al (2003) Erythropoietin-induced metallothionein gene expression: role in proliferation of K562 cells. Exp Biol Med (Maywood) 228:1033–1039Google Scholar
  83. 83.
    Wakida K, Shimazawa M, Hozumi I et al (2007) Neuroprotective effect of erythropoietin, and role of metallothionein-1 and -2, in permanent focal cerebral ischemia. Neuroscience 148:105–114CrossRefPubMedGoogle Scholar
  84. 84.
    Suárez I, Bodega G, Fernández B (2002) Glutamine synthetase in brain: effect of ammonia. Neurochem Int 41:123–142CrossRefPubMedGoogle Scholar
  85. 85.
    Yang M, Butler M (2000) Effect of ammonia on the glycosylation of human recombinant erythropoietin in culture. Biotechnol Prog 16:751–759CrossRefPubMedGoogle Scholar
  86. 86.
    Yang M, Butler M (2000) Enhanced erythropoietin heterogeneity in a CHO culture is caused by proteolytic degradation and can be eliminated by a high glutamine level. Cytotechnology 34:83–99CrossRefPubMedGoogle Scholar
  87. 87.
    Chun YS, Choi E, Kim GT et al (2000) Zinc induces the accumulation of hypoxia-inducible factor (HIF)-1alpha, but inhibits the nuclear translocation of HIF-1beta, causing HIF-1 inactivation. Biochem Biophys Res Commun 268:652–656CrossRefPubMedGoogle Scholar
  88. 88.
    Yoshida Y, Higashi T, Nouso K et al (2001) Effects of zinc deficiency/zinc supplementation on ammonia metabolism in patients with decompensated liver cirrhosis. Acta Med Okayama 55:349–355PubMedGoogle Scholar
  89. 89.
    Iwata M, Takebayashi T, Ohta H et al (1999) Zinc accumulation and metallothionein gene expression in the proliferating epidermis during wound healing in mouse skin. Histochem Cell Biol 112:283–290CrossRefPubMedGoogle Scholar
  90. 90.
    Kruczek C, Görg B, Keitel V et al (2009) Hypoosmotic swelling affects zinc homeostasis in cultured rat astrocytes. Glia 57:79–92CrossRefPubMedGoogle Scholar
  91. 91.
    Li H, Zhao Y, Guo Y et al (2007) Zinc induces dimerization of the class II major histocompatibility complex molecule that leads to cooperative binding to a superantigen. J Biol Chem 282:5991–6000CrossRefPubMedGoogle Scholar
  92. 92.
    Janes SM, Ofstad TA et al (2004) Transient activation of FOXN1 in keratinocytes induces a transcriptional programme that promotes terminal differentiation: contrasting roles of FOXN1 and Akt. J Cell Sci 117:4157–4168CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • L. Danielyan
    • 1
  • S. Verleysdonk
    • 2
  • M. Buadze
    • 1
  • C. H. Gleiter
    • 1
  • G. H. Buniatian
    • 3
  1. 1.Department of Clinical PharmacologyUniversity Hospital of TuebingenTuebingenGermany
  2. 2.Interfaculty Institute for BiochemistryUniversity of TuebingenTuebingenGermany
  3. 3.H. Buniatian Institute of BiochemistryYerevanRepublic of Armenia

Personalised recommendations