Neurochemical Research

, Volume 35, Issue 2, pp 227–238 | Cite as

The Effects of Polyphenols on Survival and Locomotor Activity in Drosophila melanogaster Exposed to Iron and Paraquat

  • M. Jimenez-Del-Rio
  • C. Guzman-Martinez
  • C. Velez-Pardo
Original Paper

Abstract

Parkinson’s disease (PD) is a common progressive neurodegenerative disorder, for which at present no causal treatment is available. On the understanding that the causes of PD are mainly oxidative stress and mitochondrial dysfunction, antioxidants and other drugs are expected to be used. In the present study, we demonstrated for the first time that pure polyphenols such as gallic acid, ferulic acid, caffeic acid, coumaric acid, propyl gallate, epicatechin, epigallocatechin, and epigallocatechin gallate protect, rescue and, most importantly, restore the impaired movement activity (i.e., climbing capability) induced by paraquat in Drosophila melanogaster, a valid model of PD. We also showed for the first time that high concentrations of iron (e.g. 15 mM FeSO4) are able to diminish fly survival and movement to a similar extent as (20 mM) paraquat treatment. Moreover, paraquat and iron synergistically affect both survival and locomotor function. Remarkably, propyl gallate and epigallocatechin gallate protected and maintained movement abilities in flies co-treated with paraquat and iron. Our findings indicate that pure polyphenols might be potent neuroprotective agents for the treatment of PD against stressful stimuli.

Keywords

Drosophila Iron Locomotor Parkinson Paraquat Polyphenol Survival Toxicity 

Notes

Acknowledgments

This work was supported by Colciencias grants #1115-408-20504, and CODI-U.deA. grants #2408 awarded to C.V.-P. and M.J.-Del-Rio.

References

  1. 1.
    Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272CrossRefPubMedGoogle Scholar
  2. 2.
    Berg D (2007) Disturbance of iron metabolism as a contributing factor to SN hyperechogenicity in Parkinson’s disease: implications for idiopathic and monogenetic forms. Neurochem Res 32:1646–1654CrossRefPubMedGoogle Scholar
  3. 3.
    Henchcliffe C, Beal MF (2008) Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis. Nat Clin Pract Neurol 4:600–609CrossRefPubMedGoogle Scholar
  4. 4.
    Zhou C, Huang Y, Przedborski S (2008) Oxidative stress in Parkinson’s disease: a mechanism of pathogenic and therapeutic significance. Ann N Y Acad Sci 1147:93–104PubMedCrossRefGoogle Scholar
  5. 5.
    Dick FD, De Palma G, Ahmadi A, Scott NW, Prescott GJ, Bennett J, Semple S, Dick S, Counsell C, Mozzoni P, Haites N, Wettinger SB, Mutti A, Otelea M, Seaton A, Söderkvist P, Felice A, Geoparkinson study group (2007) Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study. Occup Environ Med 64:666–672CrossRefPubMedGoogle Scholar
  6. 6.
    Jones DC, Miller GW (2008) The effects of environmental neurotoxicants on the dopaminergic system: a possible role in drug addiction. Biochem Pharmacol 76:569–581CrossRefPubMedGoogle Scholar
  7. 7.
    Ballard PA, Tetrud JW, Langston JW (1985) Permanent human parkinsonism due to 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP): seven cases. Neurology 35:949–956PubMedGoogle Scholar
  8. 8.
    Hertzman C, Wiens M, Bowering D, Snow B, Calne D (1990) Parkinson’s disease: a case–control study of occupational and environmental risk factors. Am J Ind Med 17:349–355CrossRefPubMedGoogle Scholar
  9. 9.
    Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC (1997) Environmental risk factors and Parkinson’s disease: a case–control study in Taiwan. Neurology 48:1583–1588PubMedGoogle Scholar
  10. 10.
    Bové J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–894CrossRefPubMedGoogle Scholar
  11. 11.
    Cochemé HM, Murphy MP (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. J Biol Chem 283:1786–1798CrossRefPubMedGoogle Scholar
  12. 12.
    Dinis-Oliveira RJ, Remiao F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F (2006) Paraquat exposure as an etiological factor of Parkinson’s disease. Neurotoxicology 27:1110–1122CrossRefPubMedGoogle Scholar
  13. 13.
    Chaudhuri A, Bowling K, Funderburk C, Lawal H, Inamdar A, Wang Z, O’Donnell JM (2007) Interaction of genetic and environmental factors in a Drosophila parkinsonism model. J Neurosci 27:2457–2467CrossRefPubMedGoogle Scholar
  14. 14.
    Kuter K, Smiałowska M, Wierońska J, Zieba B, Wardas J, Pietraszek M, Nowak P, Biedka I, Roczniak W, Konieczny J, Wolfarth S, Ossowska K (2007) Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats. Brain Res 1155:196–207CrossRefPubMedGoogle Scholar
  15. 15.
    Li X, Yin J, Cheng CM, Sun JL, Li Z, Wu YL (2005) Paraquat induces selective dopaminergic nigrostriatal degeneration in aging C57BL/6 mice. Chin Med J (Engl) 118:1357–1361Google Scholar
  16. 16.
    Prasad K, Tarasewicz E, Mathew J, Strickland PA, Buckley B, Richardson JR, Richfield EK (2009) Toxicokinetics and toxicodynamics of paraquat accumulation in mouse brain. Exp Neurol 215:358–367CrossRefPubMedGoogle Scholar
  17. 17.
    Nichols CD (2006) Drosophila melanogaster neurobiology, neuropharmacology, and how the fly can inform central nervous system drug discovery. Pharmacol Ther 112:677–700CrossRefPubMedGoogle Scholar
  18. 18.
    Manev H, Dimitrijevic N, Dzitoyeva S (2003) Techniques: fruit flies as models for neuropharmacological research. Trends Pharmacol Sci 24:41–43CrossRefPubMedGoogle Scholar
  19. 19.
    Jimenez-Del-Rio M, Daza-Restrepo A, Velez-Pardo C (2008) The cannabinoid CP55, 940 prolongs survival and improves locomotor activity in Drosophila melanogaster against paraquat: implications in Parkinson’s disease. Neurosci Res 61:404–411CrossRefPubMedGoogle Scholar
  20. 20.
    Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398CrossRefPubMedGoogle Scholar
  21. 21.
    Pendleton RG, Rasheed A, Sardina T, Tully T, Hillman R (2002) Effects of tyrosine hydroxylase mutants on locomotor activity in Drosophila: a study in functional genomics. Behav Genet 32:89–94CrossRefPubMedGoogle Scholar
  22. 22.
    Wang C, Lu R, Ouyang X, Ho MW, Chia W, Yu F, Lim KL (2007) Drosophila overexpressing parkin R275W mutant exhibits dopaminergic neuron degeneration and mitochondrial abnormalities. J Neurosci 27:8563–8570CrossRefPubMedGoogle Scholar
  23. 23.
    Sang TK, Chang HY, Lawless GM, Ratnaparkhi A, Mee L, Ackerson LC et al (2007) A Drosophila model of mutant human parkin-induced toxicity demonstrates selective loss of dopaminergic neurons and dependence on cellular dopamine. J Neurosci 27:981–992CrossRefPubMedGoogle Scholar
  24. 24.
    Pendleton RG, Parvez F, Sayed M, Hillman R (2002) Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. J Pharmacol Exp Ther 300:91–96CrossRefPubMedGoogle Scholar
  25. 25.
    Coulom H, Birman S (2004) Chronic exposure to rotenone models sporadic Parkinson’s disease in Drosophila melanogaster. J Neurosci 24:10993–10998CrossRefPubMedGoogle Scholar
  26. 26.
    D’Archivio M, Filesi C, Di Benedetto R, Gargiulo R, Giovannini C, Masella R (2007) Polyphenols, dietary sources and bioavailability. Ann Ist Super Sanita 43:348–361PubMedGoogle Scholar
  27. 27.
    Sestili P, Diamantini G, Bedini A, Cerioni L, Tommasini I, Tarzia G, Cantoni O (2002) Plant-derived phenolic compounds prevent the DNA single-strand breakage and cytotoxicity induced by tert-butylhydroperoxide via an iron-chelating mechanism. Biochem J 364(Pt 1):121–128PubMedGoogle Scholar
  28. 28.
    Melidou M, Riganakos K, Galaris D (2005) Protection against nuclear DNA damage offered by flavonoids in cells exposed to hydrogen peroxide: the role of iron chelation. Free Radic Biol Med 39:1591–1600CrossRefPubMedGoogle Scholar
  29. 29.
    Perron NR, Brumaghim JL (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53:75–100CrossRefPubMedGoogle Scholar
  30. 30.
    Ramassamy C (2006) Emerging role of polyphenolic compounds in the treatment of neurodegenerative diseases: a review of their intracellular targets. Eur J Pharmacol 545:51–64CrossRefPubMedGoogle Scholar
  31. 31.
    Zaveri NT (2006) Green tea and its polyphenolic catechins: medicinal uses in cancer and noncancer applications. Life Sci 78:2073–2080CrossRefPubMedGoogle Scholar
  32. 32.
    Galati G, Sabzevari O, Wilson JX, O’Brien PJ (2002) Prooxidant activity and cellular effects of the phenoxyl radicals of dietary flavonoids and other polyphenolics. Toxicology 177:91–104CrossRefPubMedGoogle Scholar
  33. 33.
    Elbling L, Weiss RM, Teufelhofer O, Uhl M, Knasmueller S, Schulte-Hermann R, Berger W, Micksche M (2005) Green tea extract and (-)-epigallocatechin-3-gallate, the major tea catechin, exert oxidant but lack antioxidant activities. FASEB J 19:807–809PubMedGoogle Scholar
  34. 34.
    Shin JK, Kim GN, Jang HD (2007) Antioxidant and pro-oxidant effects of green tea extracts in oxygen radical absorbance capacity assay. J Med Food 10:32–40CrossRefPubMedGoogle Scholar
  35. 35.
    Beecher GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133:3248S–3254SPubMedGoogle Scholar
  36. 36.
    USDA (2007) Database for the flavonoid content of selected foods. Release 2.1 January 2007. http://www.ars.usda.gov/nutrientdata (available on August 2009)
  37. 37.
    Berg D, Youdim MB (2006) Role of iron in neurodegenerative disorders. Top Magn Reson Imaging 17:5–17CrossRefPubMedGoogle Scholar
  38. 38.
    Farrington JA, Ebert M, Land EJ, Fletcher K (1973) Bipyridylium quaternary salts and related compounds. V. Pulse radiolysis studies of the reaction of paraquat radical with oxygen. Implications for the mode of action of bipyridyl herbicides. Biochim Biophys Acta 314:372–381CrossRefPubMedGoogle Scholar
  39. 39.
    Huang D, Ou B, Prior RL (2005) The chemistry behind antioxidant capacity assays. J Agric Food Chem 53:1841–1856CrossRefPubMedGoogle Scholar
  40. 40.
    Kim SJ, Han D, Ahn BH, Rhee JS (1997) Effect of glutathione, catechin, and epicatechin on the survival of Drosophila melanogaster under paraquat treatment. Biosci Biotechnol Biochem 61:225–229CrossRefPubMedGoogle Scholar
  41. 41.
    Li YM, Chan HY, Huang Y, Chen ZY (2007) Green tea catechins upregulate superoxide dismutase and catalase in fruit flies. Mol Nutr Food Res 51:546–554CrossRefPubMedGoogle Scholar
  42. 42.
    Liu H, Guo Z, Xu L, Hsu S (2008) Protective effect of green tea polyphenols on tributyltin-induced oxidative damage detected by in vivo and in vitro models. Environ Toxicol 23:77–83CrossRefPubMedGoogle Scholar
  43. 43.
    Villaño D, Fernandez-Pachon MS, Moya ML, Troncoso AM, Garcia-Parrila MC (2007) Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71:230–235CrossRefPubMedGoogle Scholar
  44. 44.
    Sroka Z, Cisowski W (2003) Hydrogen peroxide scavenging, antioxidant and anti-radical activity of some phenolic acids. Food Chem Toxicol 41:753–758CrossRefPubMedGoogle Scholar
  45. 45.
    Beall CJ, Hirsh J (1987) Regulation of the Drosophila dopa decarboxylase gene in neuronal and glial cells. Genes Dev 1:510–520CrossRefPubMedGoogle Scholar
  46. 46.
    Perron NR, Hodges JN, Jenkins M, Brumaghim JL (2008) Predicting how polyphenol antioxidants prevent DNA damage by binding to iron. Inorg Chem 47:6153–6161CrossRefPubMedGoogle Scholar
  47. 47.
    Oakley AE, Collingwood JF, Dobson J, Love G, Perrott HR, Edwardson JA, Elstner M, Morris CM (2007) Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology 68:1820–1825CrossRefPubMedGoogle Scholar
  48. 48.
    Wallis LI, Paley MN, Graham JM, Grünewald RA, Wignall EL, Joy HM, Griffiths PD (2008) MRI assessment of basal ganglia iron deposition in Parkinson’s disease. J Magn Reson Imaging 28:1061–1067CrossRefPubMedGoogle Scholar
  49. 49.
    Nichol H, Law JH, Winzerling JJ (2002) Iron metabolism in insects. Annu Rev Entomol 47:535–559CrossRefPubMedGoogle Scholar
  50. 50.
    Ben-Shachar D, Youdim MB (1991) Intranigral iron injection induces behavioral and biochemical “parkinsonism” in rats. J Neurochem 57:2133–2135CrossRefPubMedGoogle Scholar
  51. 51.
    Sengstock GJ, Olanow CW, Menzies RA, Dunn AJ, Arendash GW (1993) Infusion of iron into the rat substantia nigra: nigral pathology and dose–dependent loss of striatal dopaminergic markers. J Neurosci Res 35:67–82CrossRefPubMedGoogle Scholar
  52. 52.
    Sengstock GJ, Olanow CW, Dunn AJ, Barone S Jr, Arendash GW (1994) Progressive changes in striatal dopaminergic markers, nigral volume, and rotational behavior following iron infusion into the rat substantia nigra. Exp Neurol 130:82–94CrossRefPubMedGoogle Scholar
  53. 53.
    Hattoria N, Wanga M, Taka H, Fujimura T, Yoritaka A, Kubo S, Mochizuki H (2009) Toxic effects of dopamine metabolism in Parkinson’s disease. Parkinsonism Relat Disord 15(Suppl 1):S35–S38CrossRefPubMedGoogle Scholar
  54. 54.
    Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK (2007) Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson’s disease accelerate age-related neurodegeneration. J Neurosci 27:6914–6922CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • M. Jimenez-Del-Rio
    • 1
    • 2
  • C. Guzman-Martinez
    • 1
    • 2
  • C. Velez-Pardo
    • 1
    • 2
  1. 1.School of Medicine, Medical Research Institute, Neuroscience Research GroupUniversity of Antioquia (UdeA)MedellinColombia
  2. 2.SIUMedellinColombia

Personalised recommendations