Neurochemical Research

, Volume 34, Issue 7, pp 1249–1254

Effects of Exogenous Excitatory Amino Acid Neurotransmitters on Blood–Brain Barrier Disruption in Focal Cerebral Ischemia

  • Oak Z. Chi
  • Christine Hunter
  • Xia Liu
  • Harvey R. Weiss


This study was performed to determine whether exogenous N-methyl-d-aspartate (NMDA) or alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) would aggravate blood–brain barrier (BBB) disruption in focal cerebral ischemia in rats. Forty-five minutes after middle cerebral artery (MCA) occlusion, one of the following patches was applied to the exposed ischemic cerebral cortex of each rat: normal saline (control), 10−5 M AMPA, 10−4 M AMPA, 10−5 M NMDA, or 10−4 M NMDA. At 1 h after MCA occlusion, BBB permeability was determined by measuring the transfer coefficient (Ki) of 14C-α-aminoisobutyric acid (14C-AIB). In all experimental groups, the Ki of the ischemic cortex (IC) was higher than that of the corresponding contralateral cortex (CC). The Ki of the IC of the animals treated with 10−4 M AMPA or 10−4 M NMDA was higher (+41%: P < 0.05 and +33%: P < 0.05, respectively) than that of the control animals. Our data demonstrated that exogenous NMDA or AMPA could further aggravate the BBB disruption in focal cerebral ischemia. Any insult increasing the release of excitatory neurotransmitters could further aggravate BBB disruption and brain edema during the ischemic period.


Blood–brain barrier permeability Cerebral ischemia NMDA AMPA 


  1. 1.
    Ritz MF, Schmidt P, Mendelowitsch A (2004) Acute effects of 17beta-estradiol on the extracellular concentration of excitatory amino acids and energy metabolites during transient cerebral ischemia in male rats. Brain Res 1022:157–163. doi:10.1016/j.brainres.2004.07.004 PubMedCrossRefGoogle Scholar
  2. 2.
    Umemura K, Gemba T, Mizuno A et al (1996) Inhibitory effect of MS-153 on elevated brain glutamate level induced by rat middle cerebral artery occlusion. Stroke 27:1624–1628PubMedGoogle Scholar
  3. 3.
    Mayhan WG, Didion SP (1996) Glutamate-induced disruption of the blood–brain barrier in rats. Role of nitric oxide. Stroke 27:965–969 discussion 970PubMedGoogle Scholar
  4. 4.
    Sharp CD, Hines I, Houghton J et al (2003) Glutamate causes a loss in human cerebral endothelial barrier integrity through activation of NMDA receptor. Am J Physiol Heart Circ Physiol 285:H2592–H2598PubMedGoogle Scholar
  5. 5.
    Stevens MK, Yaksh TL (1990) Systematic studies on the effects of the NMDA receptor antagonist MK-801 on cerebral blood flow and responsivity, EEG, and blood–brain barrier following complete reversible cerebral ischemia. J Cereb Blood Flow Metab 10:77–88PubMedGoogle Scholar
  6. 6.
    Albayrak S, Zhao Q, Siesjo BK et al (1997) Effect of transient focal ischemia on blood–brain barrier permeability in the rat: correlation to cell injury. Acta Neuropathol 94:158–163. doi:10.1007/s004010050688 PubMedCrossRefGoogle Scholar
  7. 7.
    Chi OZ, Hunter C, Liu X et al (2005) Effects of VEGF and nitric oxide synthase inhibition on blood–brain barrier disruption in the ischemic and non-ischemic cerebral cortex. Neurol Res 27:864–868. doi:10.1179/016164105X49418 PubMedCrossRefGoogle Scholar
  8. 8.
    Andras IE, Deli MA, Veszelka S et al (2007) The NMDA and AMPA/KA receptors are involved in glutamate-induced alterations of occludin expression and phosphorylation in brain endothelial cells. J Cereb Blood Flow Metab 27:1431–1443. doi:10.1038/sj.jcbfm.9600445 PubMedCrossRefGoogle Scholar
  9. 9.
    St’astny F, Schwendt M, Lisy V et al (2002) Main subunits of ionotropic glutamate receptors are expressed in isolated rat brain microvessels. Neurol Res 24:93–96. doi:10.1179/016164102101199468 PubMedCrossRefGoogle Scholar
  10. 10.
    Dempsey RJ, Baskaya MK, Dogan A (2000) Attenuation of brain edema, blood–brain barrier breakdown, and injury volume by ifenprodil, a polyamine-site N-methyl-d-aspartate receptor antagonist, after experimental traumatic brain injury in rats. Neurosurgery 47:399–404. doi:10.1097/00006123-200008000-00024 discussion 404-396PubMedCrossRefGoogle Scholar
  11. 11.
    Germano A, Caffo M, Angileri FF et al (2007) NMDA receptor antagonist felbamate reduces behavioral deficits and blood–brain barrier permeability changes after experimental subarachnoid hemorrhage in the rat. J Neurotrauma 24:732–744. doi:10.1089/neu.2006.0181 PubMedCrossRefGoogle Scholar
  12. 12.
    Yang G, Chan PH, Chen SF et al (1994) Reduction of vasogenic edema and infarction by MK-801 in rats after temporary focal cerebral ischemia. Neurosurgery 34:339–345. doi:10.1097/00006123-199402000-00018 discussion 345PubMedCrossRefGoogle Scholar
  13. 13.
    Chi OZ, Chang Q, Weiss HR (1997) Effects of topical N-methyl-d-aspartate on blood–brain barrier permeability in the cerebral cortex of normotensive and hypertensive rats. Neurol Res 19:539–544PubMedGoogle Scholar
  14. 14.
    Westergren I, Johansson BB (1993) Blockade of AMPA receptors reduces brain edema following opening of the blood–brain barrier. J Cereb Blood Flow Metab 13:603–608PubMedGoogle Scholar
  15. 15.
    Westergren I, Johansson BB (1992) NBQX, an AMPA antagonist, reduces glutamate-mediated brain edema. Brain Res 573:324–326. doi:10.1016/0006-8993(92)90781-4 PubMedCrossRefGoogle Scholar
  16. 16.
    Gross PM, Blasberg RG, Fenstermacher JD et al (1987) The microcirculation of rat circumventricular organs and pituitary gland. Brain Res Bull 18:73–85. doi:10.1016/0361-9230(87)90035-9 PubMedCrossRefGoogle Scholar
  17. 17.
    Koenig H, Trout JJ, Goldstone AD et al (1992) Capillary NMDA receptors regulate blood–brain barrier function and breakdown. Brain Res 588:297–303. doi:10.1016/0006-8993(92)91589-7 PubMedCrossRefGoogle Scholar
  18. 18.
    Chi OZ, Wei HM, Sinha AK, Weiss HR (1994) Effects of inhibition of nitric oxide synthase on blood–brain barrier transport in focal cerebral ischemia. Pharmacology 48:367–373. doi:10.1159/000139202 PubMedCrossRefGoogle Scholar
  19. 19.
    Nag S (1991) Protective effect of flunarizine on blood–brain barrier permeability alterations in acutely hypertensive rats. Stroke 22:1265–1269PubMedGoogle Scholar
  20. 20.
    Nag S (1992) Vascular changes in the spinal cord in N-methyl-d-aspartate-induced excitotoxicity: morphological and permeability studies. Acta Neuropathol 84:471–477. doi:10.1007/BF00304465 PubMedCrossRefGoogle Scholar
  21. 21.
    Lu X, Sinha AK, Weiss HR (1997) Effects of excitatory amino acids on cerebral oxygen consumption and blood flow in rat. Neurochem Res 22:705–711. doi:10.1023/A:1027354110563 PubMedCrossRefGoogle Scholar
  22. 22.
    Johansson BB, Westergren I (1994) Pharmacological reduction of brain edema induced by intracarotid infusion of protamine sulphate: a comparison between a free radical scavenger and an AMPA receptor antagonist. Acta Neurochir Suppl (Wien) 60:128–131Google Scholar
  23. 23.
    Matute C, Gutierrez-Igarza K, Rio C et al (1994) Glutamate receptors in astrocytic end-feet. NeuroReport 5:1205–1208. doi:10.1097/00001756-199407000-00012 PubMedCrossRefGoogle Scholar
  24. 24.
    Chi OZ, Chang Q, Wang G et al (1999) A nonNMDA antagonist, GYKI 52466 improves microscopic O2 balance in the cortex during focal cerebral ischemia. Neurol Res 21:299–304PubMedGoogle Scholar
  25. 25.
    Narayanan U, Chi OZ, Liu X et al (2000) Effect of AMPA on cerebral cortical oxygen balance of ischemic rat brain. Neurochem Res 25:405–411. doi:10.1023/A:1007505507532 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Oak Z. Chi
    • 1
  • Christine Hunter
    • 1
  • Xia Liu
    • 1
  • Harvey R. Weiss
    • 2
  1. 1.Department of Anesthesia, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyNew BrunswickUSA
  2. 2.Department of Physiology and Biophysics, Robert Wood Johnson Medical SchoolUniversity of Medicine and Dentistry of New JerseyPiscatawayUSA

Personalised recommendations