Neurochemical Research

, Volume 34, Issue 4, pp 630–638 | Cite as

Natural Antioxidants Protect Neurons in Alzheimer’s Disease and Parkinson’s Disease

  • Baolu Zhao


“Modern” medicine and pharmacology require an effective medical drug with a single compound for a specific disease. This seams very scientific but usually has unavoidable side effects. For example, the chemical therapy to cancer can totally damage the immunological ability of the patient leading to death early than non-treatment. On the other hand, natural antioxidant drugs not only can cure the disease but also can enhance the immunological ability of the patient leading to healthier though they usually have several compounds or a mixture. For the degenerative disease such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), natural antioxidant drugs are suitable drugs, because the pathogenesis of these diseases is complex with many targets and pathways. These effects are more evidence when the clinic trial is for long term treatment. The author reviews the studies on the protecting effects of natural antioxidants on neurons in neurodegenerative diseases, especially summarized the results about protective effect of green tea polyphenols on neurons against apoptosis of cellular and animal PD models, and of genestine and nicotine on neurons against Aβ—induced apoptosis of hippocampal neuronal and transgenic mouse AD models.


Oxidative stress Green tea polyphenols Nicotine Genistein Neurodegenerative diseases Alzheimer’s disease (AD) Parkinson’s disease (PD) 



This work was supported by grants from the National Natural Science Foundation of China (29935080), 973(2006CB500706), Key Laboratory of Mental Health, Chinese Academy of Sciences, the E-Institutes of Shanghai Municipal Education Commission (Project No. E-04010). I sincerely thank professor Jiankang Liu for his suggestions and comments to this paper.


  1. 1.
    Butterfield DA, Kanski J (2001) Brain protein oxidation in age-related neurodegenerative disorders that are associated with aggregated proteins. Mech Ageing Dev 122:945–962. doi: 10.1016/S0047-6374(01)00249-4 PubMedCrossRefGoogle Scholar
  2. 2.
    Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9:315–325. doi: 10.1016/0891-5849(90)90006-5 PubMedCrossRefGoogle Scholar
  3. 3.
    Nunomura A, Perry G, Pappolla MA, Wade R, Hirai K, Chiba S et al (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964PubMedGoogle Scholar
  4. 4.
    Gabbita SP, Lovell MA, Markesbery WR (1998) Increased nuclear DNA oxidation in the brain in Alzheimer’s disease. J Neurochem 71:2034–2040PubMedGoogle Scholar
  5. 5.
    Mecocci PL, MacGarvey U, Beal MF (1994) Oxidative damage to mitochondrial DNA is increased in Alzheimer’s disease. Ann Neurol 36:747–750. doi: 10.1002/ana.410360510 PubMedCrossRefGoogle Scholar
  6. 6.
    Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF et al (1996) Oxidative damage in Alzheimer’s disease. Nature 382:120–121. doi: 10.1038/382120b0 PubMedCrossRefGoogle Scholar
  7. 7.
    Smith MA, Hirai K, Hsiao K, Pappolla MA, Harris PL, Siedlak SL et al (1998) Amyloid-β deposition in Alzheimer transgenic mice is associated with oxidative stress. J Neurochem 70:2212–2215PubMedCrossRefGoogle Scholar
  8. 8.
    Huang X, Atwood CS, Hartshorn MA, Multhaup G, Goldstein E, Scarpa RC et al (1999) The amyloid-b-peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochemistry 38:7609–7616. doi: 10.1021/bi990438f PubMedCrossRefGoogle Scholar
  9. 9.
    Huang X, Cuajungco MP, Atwood CS, Hartshorn MA, Tyndall JD, Hanson GR et al (1999) Cu(II) potentiation of Alzheimer Ab neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 74:37111–37116. doi: 10.1074/jbc.274.52.37111 CrossRefGoogle Scholar
  10. 10.
    Behl C, Davis JB, Lesley R, Schubert D (1994) Hydrogen peroxide mediates amyloid b protein toxicity. Cell 77:817–827. doi: 10.1016/0092-8674(94)90131-7 PubMedCrossRefGoogle Scholar
  11. 11.
    Markesbery WR, Carney JM (1999) Oxidative alterations in Alzheimer’s disease. Brain Pathol 9:133–146PubMedGoogle Scholar
  12. 12.
    Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23:134–147. doi: 10.1016/S0891-5849(96)00629-6 PubMedCrossRefGoogle Scholar
  13. 13.
    Christen Y (2000) Oxidative stress and Alzheimer disease. Am J Clin Nutr 71:621S–629SPubMedGoogle Scholar
  14. 14.
    Smith MA (2000) Oxidative stress in Alzheimer’s disease. Biochim Biophys Acta 1502:139–144PubMedGoogle Scholar
  15. 15.
    Varadarajan S (2000) Review: Alzheimer’s amyloid-peptide-associated free radical oxidative stress and neurotoxicity. J Struct Biol 130:184–208. doi: 10.1006/jsbi.2000.4274 PubMedCrossRefGoogle Scholar
  16. 16.
    Beckman JS (1996) Oxidative damage and tyrosine nitration from peroxynitrite. Chem Res Toxicol 9:836–844. doi: 10.1021/tx9501445 PubMedCrossRefGoogle Scholar
  17. 17.
    Xin W-J, Zhao B-L, Zhang J-Z (1984) Studies on the property of sulfhydryl groups binding sites on the lung normal cell and cancer cell membrane of Chinese hamster with maleimide spin labels. Sci Sin [B] 28:1008–1014Google Scholar
  18. 18.
    Hirsch EC, Faucheux B, Damier P, Mouatt-Prigent A, Agid Y (1997) Neuronal vulnerability in Parkinson’s disease. J Neural Transm 50:79–88Google Scholar
  19. 19.
    Mochizuki H, Goto K, Mori H, Mizuno Y (1996) Histochemical detection of apoptosis in Parkinson’s disease. J Neurol Sci 137:120–123. doi: 10.1016/0022-510X(95)00336-Z PubMedCrossRefGoogle Scholar
  20. 20.
    Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J et al (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:25–31PubMedGoogle Scholar
  21. 21.
    Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigra neurons. Am J Pathol 150:119–131PubMedGoogle Scholar
  22. 22.
    Halliwall B (1992) Reactive oxygen species and the central nervous system. J Neurochem 59:1609–1623. doi: 10.1111/j.1471-4159.1992.tb10990.x CrossRefGoogle Scholar
  23. 23.
    Jenner P, Olanow CW (1998) Understanding cell death in Parkinson’s disease. Ann Neurol 44(Suppl1):S72–S84PubMedGoogle Scholar
  24. 24.
    Soto-Otero R, Méndez-Álvarez E, Hermida-Ameijeiras Á, Muñoz-Patiño AM, Labandeira-Garcia JL (2000) Autoxidation and neurotoxicity of 6-hydrodopamine in the presence of some antioxidants: potential implication in relation to the pathogenesis of Parkinson’s disease. J Neurochem 74:1605–1612. doi: 10.1046/j.1471-4159.2000.0741605.x PubMedCrossRefGoogle Scholar
  25. 25.
    Graham D, Tiffany SM, Bell WR Jr, Gutknecht WF (1978) Autoxidation versus covalent binding of quinines as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro. Mol Pharmacol 14:644–653PubMedGoogle Scholar
  26. 26.
    Kuehl FA, Egan RW (1980) Prataglandins, arachidonic acid and inflammation. Science 210:978–984. doi: 10.1126/science.6254151 PubMedCrossRefGoogle Scholar
  27. 27.
    Ishge K, Schubert D, Sagara Y (2001) Flavonoids protect neuronal cells from oxidative stress by three distinct mechanisms. Free Radic Biol Med 30:433–446. doi: 10.1016/S0891-5849(00)00498-6 CrossRefGoogle Scholar
  28. 28.
    Ni Y-C, Zhao B-L, Hou J-W, Xin W-J (1996) Protection of cerebellar neuron by Ginkgo-biloba extract against apoptosis induced by hydroxyl radicals. Neuronsci Lett 214:115–118. doi: 10.1016/0304-3940(96)12897-4 CrossRefGoogle Scholar
  29. 29.
    Chen C, Wei T-T, Gao Z, Zhao B-L, Hou J-W, Xu H-B et al (1999) Different effects of the constituents of Egb-761 on apoptosis in rat cerebellar granule cells induced by hydroxyl radicals. Biochem Mol Biol Int 47:397–405PubMedGoogle Scholar
  30. 30.
    Xin W-J, Wei T-T, Chen C, Ni Y-C, Zhao B-L, Hou J-W (2000) Mechanisms of apoptosis in rat cerebellar granule cells induced by hydroxyl radicals and effects of Egb761 and its constitutes. Toxicology 148:103–110. doi: 10.1016/S0300-483X(00)00200-6 PubMedCrossRefGoogle Scholar
  31. 31.
    Nanjo F, Goto K, Seto R, Suzuki M, Sakai M, Hara Y (1996) Scavenging effect of tea catechins and their derivatives on 1,1-diphenyl-2-picrylhdrazyl radical. Free Radic Biol Med 21:895–902. doi: 10.1016/0891-5849(96)00237-7 PubMedCrossRefGoogle Scholar
  32. 32.
    Zhao B-L, Li X-J, He R-G, Cheng S-J, Xin W-J (1989) Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 14:175–181PubMedGoogle Scholar
  33. 33.
    Guo Q, Zhao B-L, Li M-F, Shen S-R, Xin W-J (1996) Studies on protective mechanisms of four components of green tea polyphenols (GTP) against lipid peroxidation in synaptosomes. Biochim Biophys Acta 1304:210–222PubMedGoogle Scholar
  34. 34.
    Guo Q, Zhao B-L, Hou J-W, Xin W-J (1999) ESR study on the structure-antioxidant activiity relationship of tea catechins and their epimers. Biochim Biophys Acta 1427:13–23PubMedGoogle Scholar
  35. 35.
    Zhao B-L, Guo Q, Xin W-J (2001) Free radical scavenging by green tea polyphenols. Methods Enzymol 335:217–231. doi: 10.1016/S0076-6879(01)35245-X PubMedCrossRefGoogle Scholar
  36. 36.
    Nie G-J, Wei T-T, Zhao B-L (2001) Polyphenol protection of DNA against damage. Methods Enzymol 335:232–231244. doi: 10.1016/S0076-6879(01)35246-1 PubMedCrossRefGoogle Scholar
  37. 37.
    Inanami O, Watanabe Y, Syuto B, Nakano M, Tsuji M, Kuwabara M (1998) Oral administration of (−) catechin protects against ischemia-reperfusion-induced neuronal death in the gerbil. Free Radic Res 29:359–365. doi: 10.1080/10715769800300401 PubMedCrossRefGoogle Scholar
  38. 38.
    Yoneda T, Hiramatsu M, Skamoto N, Togasaki K, Komatsu M, Yamaguchi K (1995) Antioxidant effects of “β catechin”. Biochem Mol Biol Int 35:995–1008PubMedGoogle Scholar
  39. 39.
    Nie GJ, Jin C-F, Zhao B-L (2002) Distinct effects of tea catechins on 6-hydroxydopamine-induced apoptosis in PC12 cells. Arch Biochem Biophys 397:84–90. doi: 10.1006/abbi.2001.2636 PubMedCrossRefGoogle Scholar
  40. 40.
    Nie GJ, Cao YL, Zhao BL (2002) Protective effects of green tea polyphenols and their major component, (−)-epigallocatechin-3-gallate (EGCG), on 6-hydroxyldopamine-induced apoptosis in PC12 cells. Redox Rep 7:170–177. doi: 10.1179/135100002125000424 CrossRefGoogle Scholar
  41. 41.
    Guo S-H, Bezard E, Zhao B-L (2005) Protective effect of green tea polyphenols on the SH-SY5Y cells against 6-OHDA induced apoptosis through ROS-NO pathway. Free Radic Biol Med 39:682–695. doi: 10.1016/j.freeradbiomed.2005.04.022 PubMedCrossRefGoogle Scholar
  42. 42.
    Guo S, Yan J, Bezard E, Yang T, Yang X, Zhao B (2007) Protective effects of green tea polyphenols in the 6-OHDA rat model of Parkinson’s disease through inhibition of ROS-NO pathway. Biol Psychiatry 62:1353–1362. doi: 10.1016/j.biopsych.2007.04.020 PubMedCrossRefGoogle Scholar
  43. 43.
    Levites Y, Weinreb O, Maor G, Youdim MBH, Mandel S (2001) Green tea polyphenol epigallocatechin-3-gallate prevents MPTP induced dopaminergic neurodegeneration. J Neurochem 78:1073–1082. doi: 10.1046/j.1471-4159.2001.00490.x PubMedCrossRefGoogle Scholar
  44. 44.
    Levites Y, Youdima MBH, Mao G, Mandel S (2002) Attenuation of 6-OHDA-induced nuclear factor-NF-kB activation and cell death by tea extracts in neuronal cultures. Biochem Pharmacol 63:21–29. doi: 10.1016/S0006-2952(01)00813-9 PubMedCrossRefGoogle Scholar
  45. 45.
    Levites Y, Amit T, Youdim MBH, Mandel S (2002) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 77:30574–30580. doi: 10.1074/jbc.M202832200 CrossRefGoogle Scholar
  46. 46.
    Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D et al (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814. doi: 10.1523/JNEUROSCI.1521-05.2005 PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang Y, Zhao BL (2003) Green tea polyphenols enhance sodium nitroprusside induced neurotoxicity in human neuroblastoma SH-SY5Y cells. J Neurochem 86:1189–1200PubMedGoogle Scholar
  48. 48.
    Kurzer MS, Xu X (1997) Dietary phytoestrogens. Annu Rev Nutr 17:353–381. doi: 10.1146/annurev.nutr.17.1.353 PubMedCrossRefGoogle Scholar
  49. 49.
    Chan W-H, Yu J-S (2000) Inhibition of UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermal carcinoma A431 cells by genistein. J Cell Biochem 78:73–84. doi :10.1002/(SICI)1097-4644(20000701)78:1<;73::AID-JCB7>;3.0.CO;2-PPubMedCrossRefGoogle Scholar
  50. 50.
    Johnson KL, Vaillant F, Lawen A (1996) Protein tyrosine kinase inhibitors prevent didemnin B-induced apoptosis in HL-60 cells. FEBS Lett 383:1–5. doi: 10.1016/0014-5793(96)00203-7 PubMedCrossRefGoogle Scholar
  51. 51.
    Qiong G, Gerald R, Hadi M, Stefan W, Lester P (2002) ESR and cell culture studies on free radical-scavenging and antioxidant activities of isoflavonoids. Toxicol 179:171–180. doi: 10.1016/S0300-483X(02)00241-X CrossRefGoogle Scholar
  52. 52.
    Ohigashi T, Ueno M, Nonnnaka S, Nakanoma T, Furukawa Y, Deguchi N et al (2000) Tyrosin kinase inhibitors reduce bcl-2 expression and induced apoptosis in androgen-depent cells. Am J Physiol 278:C66–C72Google Scholar
  53. 53.
    Helen K, Hong L, Lin L, John G (2000) Attenuation of neurodegeneration-relevant modifications of brain proteins by dietary soy. Biofactors 12:243–250CrossRefGoogle Scholar
  54. 54.
    Clarkson TB, Anthony MS, Williams JK, Honore EK, Cline JM (1997) The potential of soybeen phytoestrogens for postmenopausal hormone replacement therapy. Proc Soc Exp Biol Med 217:365–368Google Scholar
  55. 55.
    Lamartiniere CA, Fritz WA (1998) Genistein: chemoprevention, in vivo mechanism of action, and bioavaliability. Korea Soybean Dig 15:60–80Google Scholar
  56. 56.
    Andersen JM, Myhre O, Fonnum F (2003) Discussion of the role of the extracellular signal-regulated kinase-phospholipase A2 pathway in production of reactive oxygen species in Alzheimer’s disease. Neurochem Res 28:319–326. doi: 10.1023/A:1022389503105 PubMedCrossRefGoogle Scholar
  57. 57.
    Chang HC, Churchwell MI, Delclos KB, Newbold RR, Doerge DR (2000) Mass spectrometric determination of genistein tissue distribution in diet-exposed Sprague–Dawley rats. J Nutr 130:1963–1970PubMedGoogle Scholar
  58. 58.
    Zeng HY, Chen Q, Zhao B-L (2004) Genistein ameliorated β-amyloid peptide-induced hippocampal neuronal apoptosis. Free Radic Biol Med 36:180–188. doi: 10.1016/j.freeradbiomed.2003.10.018 PubMedCrossRefGoogle Scholar
  59. 59.
    Gutierrez-Zepeda A, Santell R, Wu R, Brown M, Wu Y, Khan I et al (2005) Soy isoflavone glycitein protects against beta amyloid-induced toxicity and oxidative stress in transgenic Caenorhabditis elegans. BMC Neurosci 6(54):1–9Google Scholar
  60. 60.
    Liu Q, Tao Y, Zhao B-L (2003) ESR study on scavenging effect of nicotine on free radicals. Appl Magn Reson 24:105–112CrossRefGoogle Scholar
  61. 61.
    Liu Q, Zhao B-L (2004) Nicotine attenuates β-amyloid peptide induced neurotoxicity, free radical and calcium accumulation in hippocampal neuronal cultures. Br J Pharmacol 141:746–754. doi: 10.1038/sj.bjp.0705653 PubMedCrossRefGoogle Scholar
  62. 62.
    Xie Y, Bezard E, Zhao B-L (2005) Unraveling the receptor- independent neuroprotective mechanism in mitochondria. J Biol Chem 37:32405–32412. doi: 10.1074/jbc.M504664200 CrossRefGoogle Scholar
  63. 63.
    Zhang J, Liu Q, Liu N, Li F, Chen Q, Qin C, Zhu H, Huang Y, Zhao B-L (2006) Nicotine reduces β-amyloidosis by regulating metal homeostasis. FASEB J 20:1212–1214. doi: 10.1096/fj.05-5214fje PubMedCrossRefGoogle Scholar
  64. 64.
    Liu Q, Zhang J, Zhu H, Qin C, Chen Q, Zhao B-L (2007) Dissecting the signalling pathway of nicotine-mediated neuroprotection in a mouse Alzheimer disease model. FASEB J 21:61–73. doi: 10.1096/fj.06-5841com PubMedCrossRefGoogle Scholar
  65. 65.
    Nordberg A, m-Lindahl EH, Lee M, Johnson M, Mousavi M, Perry RHE, Bednar I, Court J (2002) Chronic nicotine treatment reduces b-amyloidosis in the brain of a mouse model of Alzheimer’s disease. J Neurochem 81:655–658. doi: 10.1046/j.1471-4159.2002.00874.x PubMedCrossRefGoogle Scholar
  66. 66.
    Hellstrom-Lindahl E, Court J, Keverne J, Svedberg M, Lee M, Marutle A et al (2004) Nicotine reduces Aβ in the brain and cerebral vessels of APPsw mice. Eur J Neurosci 19:2703–2710. doi: 10.1111/j.0953-816X.2004.03377.x PubMedCrossRefGoogle Scholar
  67. 67.
    Kaiser S, Wonnacott S (1998) Nicotinic receptor modulation of neurotransmitter release. In: Arneric SP, Brioni JD (eds) Neuronal nicotinic receptors: pharmacology and therapeutic opportunities. Wiley, New York, pp 141–159Google Scholar
  68. 68.
    Shimohama S, Greenwald DL, Shafron DH, Akaike A, Maeda T, Kaneko S (1998) Nicotinic receptor-mediated protection against β-amyloid neurotoxicity. Brain Res 779:359–363. doi: 10.1016/S0006-8993(97)00194-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.State Key Laboratory of Brain and Cognitive Science, Institute of BiophysicsAcademia SinicaBeijingPeople’s Republic of China

Personalised recommendations