Neurochemical Research

, 34:1129 | Cite as

Zebrafish Rohon-Beard Neuron Development: Cdk5 in the Midst

  • Jyotshnabala Kanungo
  • Ya-Li Zheng
  • Bibhutibhushan Mishra
  • Harish C. PantEmail author


Cyclin-dependent kinase 5 (cdk5) is a proline-directed serine/threonine kinase that is activated mostly by association with its activators, p35 and p39. Initially projected as a neuron-specific kinase, cdk5 is expressed ubiquitously and its kinase activity solely depends on the presence of its activators, which are also found in some non-neuronal tissues. As a multifunctional protein, cdk5 has been linked to axonogenesis, cell migration, exocytosis, neuronal differentiation and apoptosis. Cdk5 plays a critical role in functions other than normal physiology, especially in neurodegeneration. Its contribution to both normal physiological as well as pathological processes is mediated by its specific substrates. Cdk5-null mice are embryonically lethal, therefore making it difficult to study precisely what cdk5 does to the nervous system at early stages of development, be it neuron development or programmed cell death. Zebrafish model system bypasses the impediment, as it is amenable to reverse genetics studies. One of the functions that we have followed for the cdk5 ortholog in zebrafish in vivo is its effect on the Rohon-Beard (RB) neurons. RB neurons are the primary sensory spinal neurons that die during the first two days of zebrafish development eventually to be replaced by the dorsal root ganglia (DRG). Based on ours studies and others’, here we discuss possible mechanisms that may be involved in cdk5’s role in RB neuron development and survival.


Rohon-Beard neuron Neurogenesis Protein kinases Gene knockdown Cell fate 



This work was supported by intramural funds from the National Institute of Neurological Disorders and Stroke, National Institutes of Health, USA. We thank Drs. Ajay Chitnis and Moloy Goswami (NICHD, NIH) for providing the HuC plasmid and helpful discussions.


  1. 1.
    Meyerson M, Enders GH, Wu CL et al (1992) A family of human cdc2-related protein kinases. EMBO J 11(8):2909–2917PubMedGoogle Scholar
  2. 2.
    Dhavan R, Tsai LH (2001) A decade of CDK5. Nat Rev Mol Cell Biol 2(10):749–759. doi: 10.1038/35096019 PubMedCrossRefGoogle Scholar
  3. 3.
    Liu J, Kipreos ET (2000) Evolution of cyclin-dependent kinases (CDKs) and CDK-activating kinases (CAKs): differential conservation of CAKs in yeast and metazoa. Mol Biol Evol 17(7):1061–1074PubMedGoogle Scholar
  4. 4.
    Veeranna, Grant P, Pant HC (1997) Expression of p67 (Munc-18), Cdk5, P-NFH and syntaxin during development of the rat cerebellum. Dev Neurosci 19(2):172–183. doi: 10.1159/000111203 PubMedCrossRefGoogle Scholar
  5. 5.
    Veeranna, Shetty KT, Amin N, Grant P, Albers RW, Pant HC (1996) Inhibition of neuronal cyclin-dependent kinase-5 by staurosporine and purine analogs is independent of activation by Munc-18. Neurochem Res 21(5):629–636. doi: 10.1007/BF02527763 PubMedCrossRefGoogle Scholar
  6. 6.
    Lew J, Huang QQ, Qi Z et al (1994) A brain-specific activator of cyclin-dependent kinase 5. Nature 371(6496):423–426. doi: 10.1038/371423a0 PubMedCrossRefGoogle Scholar
  7. 7.
    Tsai LH, Delalle I, Caviness VS Jr, Chae T, Harlow E (1994) p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature 371(6496):419–423. doi: 10.1038/371419a0 PubMedCrossRefGoogle Scholar
  8. 8.
    Zheng M, Leung CL, Liem RK (1998) Region-specific expression of cyclin-dependent kinase 5 (cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system. J Neurobiol 35(2):141–159. do i:10.1002/(SICI)1097-4695(199805)35:2<141::AID-NEU2>3.0.CO;2-4PubMedCrossRefGoogle Scholar
  9. 9.
    Ching YP, Pang AS, Lam WH, Qi RZ, Wang JH (2002) Identification of a neuronal Cdk5 activator-binding protein as Cdk5 inhibitor. J Biol Chem 277(18):15237–15240. doi: 10.1074/jbc.C200032200 PubMedCrossRefGoogle Scholar
  10. 10.
    Lim HY, Seow KT, Li Q, Kesuma D, Wang JH, Qi RZ (2001) Structural insights into Cdk5 activation by a neuronal Cdk5 activator. Biochem Biophys Res Commun 285(1):77–83. doi: 10.1006/bbrc.2001.5086 PubMedCrossRefGoogle Scholar
  11. 11.
    Moorthamer M, Chaudhuri B (1999) Identification of ribosomal protein L34 as a novel Cdk5 inhibitor. Biochem Biophys Res Commun 255(3):631–638. doi: 10.1006/bbrc.1999.0145 PubMedCrossRefGoogle Scholar
  12. 12.
    Moorthamer M, Zumstein-Mecker S, Chaudhuri B (1999) DNA binding protein dbpA binds Cdk5 and inhibits its activity. FEBS Lett 446(2–3):343–350. doi: 10.1016/S0014-5793(99)00248-3 PubMedCrossRefGoogle Scholar
  13. 13.
    Saito T, Hisanaga S (2001) Regulation of Cdk5 activity in post-mitotic neurons. Seikagaku 73(4):276–278PubMedGoogle Scholar
  14. 14.
    Zhu YS, Saito T, Asada A, Maekawa S, Hisanaga S (2005) Activation of latent cyclin-dependent kinase 5 (Cdk5)-p35 complexes by membrane dissociation. J Neurochem 94(6):1535–1545. doi: 10.1111/j.1471-4159.2005.03301.x PubMedCrossRefGoogle Scholar
  15. 15.
    Kawauchi T, Chihama K, Nishimura YV, Nabeshima Y, Hoshino M (2005) MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK. Biochem Biophys Res Commun 331(1):50–55. doi: 10.1016/j.bbrc.2005.03.132 PubMedCrossRefGoogle Scholar
  16. 16.
    Liu SJ, Fang ZY, Yang Y, Deng HM, Wang JZ (2003) Alzheimer-like phosphorylation of tau and neurofilament induced by cocaine in vivo. Acta Pharmacol Sin 24(6):512–518PubMedGoogle Scholar
  17. 17.
    Connell-Crowley L, Le Gall M, Vo DJ, Giniger E (2000) The cyclin-dependent kinase Cdk5 controls multiple aspects of axon patterning in vivo. Curr Biol 10(10):599–602PubMedCrossRefGoogle Scholar
  18. 18.
    Nikolic M, Dudek H, Kwon YT, Ramos YF, Tsai LH (1996) The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation. Genes Dev 10(7):816–825. doi: 10.1101/gad.10.7.816 PubMedCrossRefGoogle Scholar
  19. 19.
    Ohshima T, Ward JM, Huh CG et al (1996) Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death. Proc Natl Acad Sci USA 93(20):11173–11178. doi: 10.1073/pnas.93.20.11173 PubMedCrossRefGoogle Scholar
  20. 20.
    Smith PD, Crocker SJ, Jackson-Lewis V et al (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 100(23):13650–13655. doi: 10.1073/pnas.2232515100 PubMedCrossRefGoogle Scholar
  21. 21.
    Tsai LH, Takahashi T, Caviness VS Jr, Harlow E (1993) Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development 119(4):1029–1040PubMedGoogle Scholar
  22. 22.
    Sharma M, Sharma P, Pant HC (1999) CDK-5-mediated neurofilament phosphorylation in SHSY5Y human neuroblastoma cells. J Neurochem 73(1):79–86. doi: 10.1046/j.1471-4159.1999.0730079.x PubMedCrossRefGoogle Scholar
  23. 23.
    Benavides DR, Bibb JA (2004) Role of Cdk5 in drug abuse and plasticity. Ann N Y Acad Sci 1025:335–344. doi: 10.1196/annals.1316.041 PubMedCrossRefGoogle Scholar
  24. 24.
    Bibb JA, Snyder GL, Nishi A et al (1999) Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 402(6762):669–671. doi: 10.1038/45251 PubMedCrossRefGoogle Scholar
  25. 25.
    Shelton SB, Johnson GV (2004) Cyclin-dependent kinase-5 in neurodegeneration. J Neurochem 88(6):1313–1326PubMedGoogle Scholar
  26. 26.
    Hahn CM, Kleinholz H, Koester MP, Grieser S, Thelen K, Pollerberg GE (2005) Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization. Neuroscience 134(2):449–465. doi: 10.1016/j.neuroscience.2005.04.020 PubMedCrossRefGoogle Scholar
  27. 27.
    Kwon YT, Tsai LH, Crandall JE (1999) Callosal axon guidance defects in p35(−/−) mice. J Comp Neurol 415(2):218–229. doi:10.1002/(SICI)1096-9861(19991213)415:2<218::AID-CNE6>3.0.CO;2-FPubMedCrossRefGoogle Scholar
  28. 28.
    Amin ND, Zheng YL, Kesavapany S et al (2008) Cyclin-dependent kinase 5 phosphorylation of human septin SEPT5 (hCDCrel-1) modulates exocytosis. J Neurosci 28(14):3631–3643. doi: 10.1523/JNEUROSCI.0453-08.2008 PubMedCrossRefGoogle Scholar
  29. 29.
    Rosales JL, Lee KY (2006) Extraneuronal roles of cyclin-dependent kinase 5. Bioessays 28(10):1023–1034. doi: 10.1002/bies.20473 PubMedCrossRefGoogle Scholar
  30. 30.
    Fu AK, Ip FC, Fu WY et al (2005) Aberrant motor axon projection, acetylcholine receptor clustering, and neurotransmission in cyclin-dependent kinase 5 null mice. Proc Natl Acad Sci USA 102(42):15224–15229. doi: 10.1073/pnas.0507678102 PubMedCrossRefGoogle Scholar
  31. 31.
    Johansson JU, Lilja L, Chen XL et al (2005) Cyclin-dependent kinase 5 activators p35 and p39 facilitate formation of functional synapses. Brain Res Mol Brain Res 138(2):215–227. doi: 10.1016/j.molbrainres.2005.04.014 PubMedCrossRefGoogle Scholar
  32. 32.
    Lin W, Dominguez B, Yang J et al (2005) Neurotransmitter acetylcholine negatively regulates neuromuscular synapse formation by a Cdk5-dependent mechanism. Neuron 46(4):569–579. doi: 10.1016/j.neuron.2005.04.002 PubMedCrossRefGoogle Scholar
  33. 33.
    Cicero S, Herrup K (2005) Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation. J Neurosci 25(42):9658–9668. doi: 10.1523/JNEUROSCI.1773-05.2005 PubMedCrossRefGoogle Scholar
  34. 34.
    Lazaro JB, Kitzmann M, Poul MA, Vandromme M, Lamb NJ, Fernandez A (1997) Cyclin dependent kinase 5, cdk5, is a positive regulator of myogenesis in mouse C2 cells. J Cell Sci 110(Pt 10):1251–1260PubMedGoogle Scholar
  35. 35.
    Ko J, Humbert S, Bronson RT et al (2001) p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment. J Neurosci 21(17):6758–6771PubMedGoogle Scholar
  36. 36.
    Ackerley S, Thornhill P, Grierson AJ et al (2003) Neurofilament heavy chain side arm phosphorylation regulates axonal transport of neurofilaments. J Cell Biol 161(3):489–495. doi: 10.1083/jcb.200303138 PubMedCrossRefGoogle Scholar
  37. 37.
    Bu B, Li J, Davies P, Vincent I (2002) Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci 22(15):6515–6525PubMedGoogle Scholar
  38. 38.
    Grant P, Sharma P, Pant HC (2001) Cyclin-dependent protein kinase 5 (Cdk5) and the regulation of neurofilament metabolism. Eur J Biochem 268(6):1534–1546. doi: 10.1046/j.1432-1327.2001.02025.x PubMedCrossRefGoogle Scholar
  39. 39.
    Li BS, Zhang L, Gu J, Amin ND, Pant HC (2000) Integrin alpha(1) beta(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys-Ser-Pro tail domain phosphorylation. J Neurosci 20(16):6055–6062PubMedGoogle Scholar
  40. 40.
    Pant AC, Veeranna, Pant HC, Amin N (1997) Phosphorylation of human high molecular weight neurofilament protein (hNF-H) by neuronal cyclin-dependent kinase 5 (cdk5). Brain Res 765(2):259–266. doi: 10.1016/S0006-8993(97)00561-1 PubMedCrossRefGoogle Scholar
  41. 41.
    Sharma P, Sharma M, Amin ND, Albers RW, Pant HC (1999) Regulation of cyclin-dependent kinase 5 catalytic activity by phosphorylation. Proc Natl Acad Sci USA 96(20):11156–11160. doi: 10.1073/pnas.96.20.11156 PubMedCrossRefGoogle Scholar
  42. 42.
    Shea TB, Yabe JT, Ortiz D et al (2004) Cdk5 regulates axonal transport and phosphorylation of neurofilaments in cultured neurons. J Cell Sci 117(Pt 6):933–941. doi: 10.1242/jcs.00785 PubMedCrossRefGoogle Scholar
  43. 43.
    Shea TB, Zheng YL, Ortiz D, Pant HC (2004) Cyclin-dependent kinase 5 increases perikaryal neurofilament phosphorylation and inhibits neurofilament axonal transport in response to oxidative stress. J Neurosci Res 76(6):795–800. doi: 10.1002/jnr.20099 PubMedCrossRefGoogle Scholar
  44. 44.
    Chae T, Kwon YT, Bronson R, Dikkes P, Li E, Tsai LH (1997) Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality. Neuron 18(1):29–42. doi: 10.1016/S0896-6273(01)80044-1 PubMedCrossRefGoogle Scholar
  45. 45.
    Patel LS, Wenzel HJ, Schwartzkroin PA (2004) Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit. J Neurosci 24(41):9005–9014. doi: 10.1523/JNEUROSCI.2943-04.2004 PubMedCrossRefGoogle Scholar
  46. 46.
    Gervasi C, Szaro BG (1995) The Xenopus laevis homologue to the neuronal cyclin-dependent kinase (cdk5) is expressed in embryos by gastrulation. Brain Res Mol Brain Res 33(2):192–200. doi: 10.1016/0169-328X(95)00109-6 PubMedCrossRefGoogle Scholar
  47. 47.
    Philpott A, Porro EB, Kirschner MW, Tsai LH (1997) The role of cyclin-dependent kinase 5 and a novel regulatory subunit in regulating muscle differentiation and patterning. Genes Dev 11(11):1409–1421. doi: 10.1101/gad.11.11.1409 PubMedCrossRefGoogle Scholar
  48. 48.
    Philpott A, Tsai L, Kirschner MW (1999) Neuronal differentiation and patterning in Xenopus: the role of cdk5 and a novel activator xp35.2. Dev Biol 207(1):119–132. doi: 10.1006/dbio.1998.9146 PubMedCrossRefGoogle Scholar
  49. 49.
    Patrick GN, Zukerberg L, Nikolic M, de la Monte S, Dikkes P, Tsai LH (1999) Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature 402(6762):615–622. doi: 10.1038/45159 PubMedCrossRefGoogle Scholar
  50. 50.
    Wang J, Liu S, Fu Y, Wang JH, Lu Y (2003) Cdk5 activation induces hippocampal CA1 cell death by directly phosphorylating NMDA receptors. Nat Neurosci 6(10):1039–1047. doi: 10.1038/nn1119 PubMedCrossRefGoogle Scholar
  51. 51.
    Harada T, Morooka T, Ogawa S, Nishida E (2001) ERK induces p35, a neuron-specific activator of Cdk5, through induction of Egr1. Nat Cell Biol 3(5):453–459. doi: 10.1038/35074516 PubMedCrossRefGoogle Scholar
  52. 52.
    Li BS, Zhang L, Takahashi S et al (2002) Cyclin-dependent kinase 5 prevents neuronal apoptosis by negative regulation of c-Jun N-terminal kinase 3. EMBO J 21(3):324–333. doi: 10.1093/emboj/21.3.324 PubMedCrossRefGoogle Scholar
  53. 53.
    Wang Y, Xie WY, He Y et al (2006) Role of CDK5 in neuroprotection from serum deprivation by mu-opioid receptor agonist. Exp Neurol 202(2):313–323. doi: 10.1016/j.expneurol.2006.06.005 PubMedCrossRefGoogle Scholar
  54. 54.
    Giese KP, Ris L, Plattner F (2005) Is there a role of the cyclin-dependent kinase 5 activator p25 in Alzheimer’s disease? NeuroReport 16(16):1725–1730. doi: 10.1097/01.wnr.0000185019.67434.d2 PubMedCrossRefGoogle Scholar
  55. 55.
    Clarke JD, Hayes BP, Hunt SP, Roberts A (1984) Sensory physiology, anatomy and immunohistochemistry of Rohon-Beard neurones in embryos of Xenopus laevis. J Physiol 348:511–525PubMedGoogle Scholar
  56. 56.
    Cowan WM, Fawcett JW, O’Leary DD, Stanfield BB (1984) Regressive events in neurogenesis. Science 225(4668):1258–1265. doi: 10.1126/science.6474175 PubMedCrossRefGoogle Scholar
  57. 57.
    Oppenheim RW, Prevette D, Yin QW, Collins F, MacDonald J (1991) Control of embryonic motoneuron survival in vivo by ciliary neurotrophic factor. Science 251(5001):1616–1618. doi: 10.1126/science.2011743 PubMedCrossRefGoogle Scholar
  58. 58.
    Neystat M, Rzhetskaya M, Oo TF et al (2001) Expression of cyclin-dependent kinase 5 and its activator p35 in models of induced apoptotic death in neurons of the substantia nigra in vivo. J Neurochem 77(6):1611–1625. doi: 10.1046/j.1471-4159.2001.00376.x PubMedCrossRefGoogle Scholar
  59. 59.
    Zhu Y, Lin L, Kim S, Quaglino D, Lockshin RA, Zakeri Z (2002) Cyclin dependent kinase 5 and its interacting proteins in cell death induced in vivo by cyclophosphamide in developing mouse embryos. Cell Death Differ 9(4):421–430. doi: 10.1038/sj.cdd.4400967 PubMedCrossRefGoogle Scholar
  60. 60.
    Henchcliffe C, Burke RE (1997) Increased expression of cyclin-dependent kinase 5 in induced apoptotic neuron death in rat substantia nigra. Neurosci Lett 230(1):41–44. doi: 10.1016/S0304-3940(97)00472-2 PubMedCrossRefGoogle Scholar
  61. 61.
    Morris EJ, Keramaris E, Rideout HJ et al (2001) Cyclin-dependent kinases and P53 pathways are activated independently and mediate Bax activation in neurons after DNA damage. J Neurosci 21(14):5017–5026PubMedGoogle Scholar
  62. 62.
    Shirvan A, Ziv I, Zilkha-Falb R, Machlyn T, Barzilai A, Melamed E (1998) Expression of cell cycle-related genes during neuronal apoptosis: is there a distinct pattern? Neurochem Res 23(5):767–777. doi: 10.1023/A:1022415611545 PubMedCrossRefGoogle Scholar
  63. 63.
    Zhang BF, Peng FF, Zhang W, Shen H, Wu SB, Wu DC (2004) Involvement of cyclin dependent kinase 5 and its activator p35 in staurosporine-induced apoptosis of cortical neurons. Acta Pharmacol Sin 25(9):1105–1111PubMedGoogle Scholar
  64. 64.
    Zheng YL, Kesavapany S, Gravell M et al (2005) A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J 24(1):209–220. doi: 10.1038/sj.emboj.7600441 PubMedCrossRefGoogle Scholar
  65. 65.
    Kerokoski P, Suuronen T, Salminen A, Soininen H, Pirttila T (2001) The levels of cdk5 and p35 proteins and tau phosphorylation are reduced during neuronal apoptosis. Biochem Biophys Res Commun 280(4):998–1002. doi: 10.1006/bbrc.2001.4240 PubMedCrossRefGoogle Scholar
  66. 66.
    Penaloza C, Lin L, Lockshin RA, Zakeri Z (2006) Cell death in development: shaping the embryo. Histochem Cell Biol 126(2):149–158. doi: 10.1007/s00418-006-0214-1 PubMedCrossRefGoogle Scholar
  67. 67.
    Alvarez A, Toro R, Caceres A, Maccioni RB (1999) Inhibition of tau phosphorylating protein kinase cdk5 prevents beta-amyloid-induced neuronal death. FEBS Lett 459(3):421–426. doi: 10.1016/S0014-5793(99)01279-X PubMedCrossRefGoogle Scholar
  68. 68.
    Lee MS, Kwon YT, Li M, Peng J, Friedlander RM, Tsai LH (2000) Neurotoxicity induces cleavage of p35 to p25 by calpain. Nature 405(6784):360–364. doi: 10.1038/35012636 PubMedCrossRefGoogle Scholar
  69. 69.
    Zheng YL, Li BS, Amin ND, Albers W, Pant HC (2002) A peptide derived from cyclin-dependent kinase activator (p35) specifically inhibits Cdk5 activity and phosphorylation of tau protein in transfected cells. Eur J Biochem 269(18):4427–4434. doi: 10.1046/j.1432-1033.2002.03133.x PubMedCrossRefGoogle Scholar
  70. 70.
    Davies AM (2003) Regulation of neuronal survival and death by extracellular signals during development. EMBO J 22(11):2537–2545. doi: 10.1093/emboj/cdg254 PubMedCrossRefGoogle Scholar
  71. 71.
    Hughes A (1957) The development of the primary sensory system in Xenopus laevis (Daudin). J Anat 91(3):323–338PubMedGoogle Scholar
  72. 72.
    Kollros JJ, Bovbjerg AM (1997) Growth and death of Rohon-Beard cells in Rana pipiens and Ceratophrys ornata. J Morphol 232(1):67–78. doi :10.1002/(SICI)1097-4687(199704)232:1<67::AID-JMOR4>3.0.CO;2-LPubMedCrossRefGoogle Scholar
  73. 73.
    Lamborghini JE (1987) Disappearance of Rohon-Beard neurons from the spinal cord of larval Xenopus laevis. J Comp Neurol 264(1):47–55. doi: 10.1002/cne.902640105 PubMedCrossRefGoogle Scholar
  74. 74.
    Metcalfe WK, Myers PZ, Trevarrow B, Bass MB, Kimmel CB (1990) Primary neurons that express the L2/HNK-1 carbohydrate during early development in the zebrafish. Development 110(2):491–504PubMedGoogle Scholar
  75. 75.
    Cornell RA, Eisen JS (2000) Delta signaling mediates segregation of neural crest and spinal sensory neurons from zebrafish lateral neural plate. Development 127(13):2873–2882PubMedGoogle Scholar
  76. 76.
    Eichler VB, Porter RA (1981) Rohon-Beard cells in frog development: a study of temporal and spatial changes in a transient cell population. J Comp Neurol 203(1):121–130. doi: 10.1002/cne.902030110 PubMedCrossRefGoogle Scholar
  77. 77.
    Kanungo J, Li BS, Zheng Y, Pant HC (2006) Cyclin-dependent kinase 5 influences Rohon-Beard neuron survival in zebrafish. J Neurochem 99(1):251–259. doi: 10.1111/j.1471-4159.2006.04114.x PubMedCrossRefGoogle Scholar
  78. 78.
    Kanungo J, Li BS, Goswami M, Zheng YL, Ramchandran R, Pant HC (2007) Cloning and characterization of zebrafish (Danio rerio) cyclin-dependent kinase 5. Neurosci Lett 412(3):233–238. doi: 10.1016/j.neulet.2006.11.016 PubMedCrossRefGoogle Scholar
  79. 79.
    Blader P, Fischer N, Gradwohl G, Guillemot F, Strahle U (1997) The activity of neurogenin1 is controlled by local cues in the zebrafish embryo. Development 124(22):4557–4569PubMedGoogle Scholar
  80. 80.
    Kim CH, Bae YK, Yamanaka Y et al (1997) Overexpression of neurogenin induces ectopic expression of HuC in zebrafish. Neurosci Lett 239(2–3):113–116. doi: 10.1016/S0304-3940(97)00908-7 PubMedCrossRefGoogle Scholar
  81. 81.
    Lee JE (1997) Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 7(1):13–20. doi: 10.1016/S0959-4388(97)80115-8 PubMedCrossRefGoogle Scholar
  82. 82.
    Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87(1):43–52. doi: 10.1016/S0092-8674(00)81321-5 PubMedCrossRefGoogle Scholar
  83. 83.
    Kimmel CB, Hatta K, Eisen JS (1991) Genetic control of primary neuronal development in zebrafish. Development Suppl 2:47–57PubMedGoogle Scholar
  84. 84.
    Kawauchi T, Chihama K, Nabeshima Y, Hoshino M (2006) Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat Cell Biol 8(1):17–26. doi: 10.1038/ncb1338 PubMedCrossRefGoogle Scholar
  85. 85.
    Vernon AE, Devine C, Philpott A (2003) The cdk inhibitor p27Xic1 is required for differentiation of primary neurones in Xenopus. Development 130(1):85–92. doi: 10.1242/dev.00193 PubMedCrossRefGoogle Scholar
  86. 86.
    Vernon AE, Movassagh M, Horan I, Wise H, Ohnuma S, Philpott A (2006) Notch targets the Cdk inhibitor Xic1 to regulate differentiation but not the cell cycle in neurons. EMBO Rep 7(6):643–648PubMedGoogle Scholar
  87. 87.
    Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13(12):1501–1512. doi: 10.1101/gad.13.12.1501 PubMedCrossRefGoogle Scholar
  88. 88.
    Deng C, Zhang P, Harper JW, Elledge SJ, Leder P (1995) Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82(4):675–684. doi: 10.1016/0092-8674(95)90039-X PubMedCrossRefGoogle Scholar
  89. 89.
    Nakayama K, Ishida N, Shirane M et al (1996) Mice lacking p27(Kip1) display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85(5):707–720. doi: 10.1016/S0092-8674(00)81237-4 PubMedCrossRefGoogle Scholar
  90. 90.
    Yan Y, Frisen J, Lee MH, Massague J, Barbacid M (1997) Ablation of the CDK inhibitor p57Kip2 results in increased apoptosis and delayed differentiation during mouse development. Genes Dev 11(8):973–983. doi: 10.1101/gad.11.8.973 PubMedCrossRefGoogle Scholar
  91. 91.
    Kanungo J, Zheng YL, Amin ND, Pant HC (2008) The Notch signaling inhibitor DAPT down-regulates cdk5 activity and modulates the distribution of neuronal cytoskeletal proteins. J Neurochem 106(5):2236–2248PubMedGoogle Scholar
  92. 92.
    Cole LK, Ross LS (2001) Apoptosis in the developing zebrafish embryo. Dev Biol 240(1):123–142. doi: 10.1006/dbio.2001.0432 PubMedCrossRefGoogle Scholar
  93. 93.
    Williams JA, Barrios A, Gatchalian C, Rubin L, Wilson SW, Holder N (2000) Programmed cell death in zebrafish rohon beard neurons is influenced by TrkC1/NT-3 signaling. Dev Biol 226(2):220–230. doi: 10.1006/dbio.2000.9860 PubMedCrossRefGoogle Scholar
  94. 94.
    Svoboda KR, Linares AE, Ribera AB (2001) Activity regulates programmed cell death of zebrafish Rohon-Beard neurons. Development 128(18):3511–3520PubMedGoogle Scholar
  95. 95.
    Reyes R, Haendel M, Grant D, Melancon E, Eisen JS (2004) Slow degeneration of zebrafish Rohon-Beard neurons during programmed cell death. Dev Dyn 229(1):30–41. doi: 10.1002/dvdy.10488 PubMedCrossRefGoogle Scholar
  96. 96.
    Szaro BG, Lee VM, Gainer H (1989) Spatial and temporal expression of phosphorylated and non-phosphorylated forms of neurofilament proteins in the developing nervous system of Xenopus laevis. Brain Res Dev Brain Res 48(1):87–103. doi: 10.1016/0165-3806(89)90095-3 PubMedCrossRefGoogle Scholar
  97. 97.
    Chergui K, Svenningsson P, Greengard P (2004) Cyclin-dependent kinase 5 regulates dopaminergic and glutamatergic transmission in the striatum. Proc Natl Acad Sci USA 101(7):2191–2196. doi: 10.1073/pnas.0308652100 PubMedCrossRefGoogle Scholar
  98. 98.
    Lee HY, Jung H, Jang IH, Suh PG, Ryu SH (2008) Cdk5 phosphorylates PLD2 to mediate EGF-dependent insulin secretion. Cell Signal 20(10):1787–1794. doi: 10.1016/j.cellsig.2008.06.009 PubMedCrossRefGoogle Scholar
  99. 99.
    Lilja L, Johansson JU, Gromada J et al (2004) Cyclin-dependent kinase 5 associated with p39 promotes Munc18-1 phosphorylation and Ca(2+)-dependent exocytosis. J Biol Chem 279(28):29534–29541. doi: 10.1074/jbc.M312711200 PubMedCrossRefGoogle Scholar
  100. 100.
    Lilja L, Yang SN, Webb DL, Juntti-Berggren L, Berggren PO, Bark C (2001) Cyclin-dependent kinase 5 promotes insulin exocytosis. J Biol Chem 276(36):34199–34205. doi: 10.1074/jbc.M103776200 PubMedCrossRefGoogle Scholar
  101. 101.
    Wei FY, Nagashima K, Ohshima T et al (2005) Cdk5-dependent regulation of glucose-stimulated insulin secretion. Nat Med 11(10):1104–1108. doi: 10.1038/nm1299 PubMedCrossRefGoogle Scholar
  102. 102.
    Wilkinson DG, Nieto MA (1993) Detection of messenger RNA by in situ hybridization to tissue sections and whole mounts. Methods Enzymol 225:361–373. doi: 10.1016/0076-6879(93)25025-W PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jyotshnabala Kanungo
    • 1
  • Ya-Li Zheng
    • 1
  • Bibhutibhushan Mishra
    • 2
  • Harish C. Pant
    • 1
    Email author
  1. 1.Laboratory of NeurochemistryNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaUSA
  2. 2.Laboratory of Developmental NeurobiologyGeorgetown University School of MedicineWashingtonUSA

Personalised recommendations