Neurochemical Research

, Volume 34, Issue 6, pp 1101–1112 | Cite as

Multiple Gi Proteins Participate in Nerve Growth Factor-Induced Activation of c-Jun N-terminal Kinases in PC12 Cells

  • Prudence H. Tso
  • Christina J. Morris
  • Lisa Y. Yung
  • Nancy Y. Ip
  • Yung H. WongEmail author


Nerve growth factor (NGF)-mediated activation of mitogen-activated protein kinases (MAPK) is critical for differentiation and apoptosis of PC12 cells. Since NGF employs stress-activated c-Jun N-terminal kinase (JNK) to regulate both programmed cell death and neurite outgrowth of PC12 cells, we examined NGF-regulated JNK activity and the role of Gi/o proteins. Induction of JNK phosphorylation by NGF occurred in a time- and dose-dependent manner and was partially inhibited by pertussis toxin (PTX). To discern the participation of various signaling intermediates, PC12 cells were treated with specific inhibitors prior to NGF challenge. NGF-elevated JNK activity was abolished by inhibitors of JNK, p38 MAPK, Src, JAK3 and MEK1/2. NGF-dependent JNK phosphorylation became insensitive to PTX treatment upon transient expressions of Gαz or the PTX-resistant mutants of Gαi1–3 and GαoA. Collectively, these studies indicate that NGF-dependent JNK activity may be mediated via Gi1–3 proteins, JAK3, Src, p38 MAPK and the MEK/ERK cascade.


Nerve growth factor c-Jun N-terminal kinase Gi/o proteins PC12 pheochromocytoma cells Neurite outgrowth Trk-A receptor 



This work was supported in part by grants from the Research Grants Council of Hong Kong (HKUST 3/03C), the University Grants Committee (AoE/B-15/01), and the Hong Kong Jockey Club. NYI and YHW were recipients of the Croucher Senior Research Fellowship.


  1. 1.
    Fukuda M, Gotoh Y, Tachibana T et al (1995) Induction of neurite outgrowth by MAP kinase in PC12 cells. Oncogene 11:239–244PubMedGoogle Scholar
  2. 2.
    Xia Z, Dickens M, Raingeaud J et al (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270:1326–1331. doi: 10.1126/science.270.5240.1326 PubMedCrossRefGoogle Scholar
  3. 3.
    Waetzig V, Herdegen T (2003) The concerted signaling of ERK1/2 and JNKs is essential for PC12 cell neuritogenesis and converges at the level of target proteins. Mol Cell Neurosci 24:238–249. doi: 10.1016/S1044-7431(03)00126-X PubMedCrossRefGoogle Scholar
  4. 4.
    Leppa S, Saffrich R, Ansorge W et al (1998) Differential regulation of c-Jun by ERK and JNK during PC12 cell differentiation. EMBO J 17:4404–4413. doi: 10.1093/emboj/17.15.4404 PubMedCrossRefGoogle Scholar
  5. 5.
    Morooka T, Nishida E (1998) Requirement of p38 mitogen-activated protein kinase for neuronal differentiation in PC12 cells. J Biol Chem 273:24285–24288. doi: 10.1074/jbc.273.38.24285 PubMedCrossRefGoogle Scholar
  6. 6.
    Santos SD, Verveer PJ, Bastiaens PI (2007) Growth factor-induced MAPK network topology shapes Erk response determining PC-12 cell fate. Nat Cell Biol 9:324–330. doi: 10.1038/ncb1543 PubMedCrossRefGoogle Scholar
  7. 7.
    Deak M, Clifton AD, Lucocq LM et al (1998) Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREB. EMBO J 17:4426–4441. doi: 10.1093/emboj/17.15.4426 PubMedCrossRefGoogle Scholar
  8. 8.
    Eilers A, Whitfield J, Babij C et al (1998) Role of the Jun kinase pathway in the regulation of c-Jun expression and apoptosis in sympathetic neurons. J Neurosci 18:1713–1724PubMedGoogle Scholar
  9. 9.
    Maroney AC, Glicksman MA, Basma AN et al (1998) Motorneuron apoptosis is blocked by CEP-1347 (KT 7515), a novel inhibitor of the JNK signaling pathway. J Neurosci 18:104–111PubMedGoogle Scholar
  10. 10.
    Yu YM, Han PL, Lee JK (2003) JNK pathway is required for retinoic acid-induced neurite outgrowth of human neuroblastoma, SH-SY5Y. NeuroReport 14:941–945. doi: 10.1097/00001756-200305230-00007 PubMedCrossRefGoogle Scholar
  11. 11.
    Park KS, Lee RD, Kang SK et al (2004) Neuronal differentiation of embryonic midbrain cells by upregulation of peroxisome proliferator-activated receptor-γ via the JNK-dependent pathway. Exp Cell Res 297:424–433. doi: 10.1016/j.yexcr.2004.03.034 PubMedCrossRefGoogle Scholar
  12. 12.
    Kim SJ, Son TG, Kim K et al (2007) Interferon-gamma promotes differentiation of neural progenitor cells via the JNK pathway. Neurochem Res 32:1399–1406. doi: 10.1007/s11064-007-9323-z PubMedCrossRefGoogle Scholar
  13. 13.
    Eriksson M, Taskinen M, Leppa S (2007) Mitogen activated protein kinase-dependent activation of c-Jun and c-Fos is required for neuronal differentiation but not for growth and stress response in PC12 cells. J Cell Physiol 210:538–548. doi: 10.1002/jcp.20907 PubMedCrossRefGoogle Scholar
  14. 14.
    Yamauchi J, Miyamoto Y, Murabe M et al (2007) Gadd45a, the gene induced by the mood stabilizer valproic acid, regulates neurite outgrowth through JNK and the substrate paxillin in N1E-115 neuroblastoma cells. Exp Cell Res 313:1886–1896. doi: 10.1016/j.yexcr.2007.02.019 PubMedCrossRefGoogle Scholar
  15. 15.
    Eom DS, Choi WS, Ji S et al (2005) Activation of c-Jun N-terminal kinase is required for neurite outgrowth of dopaminergic neuronal cells. NeuroReport 16:823–828. doi: 10.1097/00001756-200505310-00009 PubMedCrossRefGoogle Scholar
  16. 16.
    Kita Y, Kimura KD, Kobayashi M et al (1998) Microinjection of activated phosphatidylinositol-3 kinase induces process outgrowth in rat PC12 cells through the Rac-JNK signal transduction pathway. J Cell Sci 111:907–915PubMedGoogle Scholar
  17. 17.
    Xiao J, Liu Y (2003) Differential roles of ERK and JNK in early and late stages of neuritogenesis: a study in a novel PC12 model system. J Neurochem 86:1516–1523. doi: 10.1046/j.1471-4159.2003.01961.x PubMedCrossRefGoogle Scholar
  18. 18.
    Waetzig V, Herdegen T (2003) A single c-Jun N-terminal kinase isoform (JNK3-p54) is an effector in both neuronal differentiation and cell death. J Biol Chem 278:567–572. doi: 10.1074/jbc.M207391200 PubMedCrossRefGoogle Scholar
  19. 19.
    Brabet P, Pantaloni C, Rodriguez M et al (1990) Neuroblastoma differentiation involves the expression of two isoforms of the α-subunit of Go. J Neurochem 54:1310–1320. doi: 10.1111/j.1471-4159.1990.tb01964.x PubMedCrossRefGoogle Scholar
  20. 20.
    Andreopoulos S, Li PP, Warsh JJ (1995) Developmental expression of Gαo and Gαs isoforms in PC12 cells: relationship to neurite outgrowth. Develop Brain Res 88:30–36. doi: 10.1016/0165-3806(95)00068-O CrossRefGoogle Scholar
  21. 21.
    Li X, Mumby SM, Greenwood A et al (1995) Pertussis toxin-sensitive G protein α-subunits: production of monoclonal antibodies and detection of differential increases on differentiation of PC12 and LA-N-5 cells. J Neurochem 64:1107–1117PubMedGoogle Scholar
  22. 22.
    He JC, Gomes I, Nguyen T et al (2005) The Gαo/i-coupled cannabinoid receptor-mediated neurite outgrowth involves Rap regulation of Src and Stat3. J Biol Chem 280:33426–33434. doi: 10.1074/jbc.M502812200 PubMedCrossRefGoogle Scholar
  23. 23.
    He JC, Neves SR, Jordan JD et al (2006) Role of the Go/i signaling network in the regulation of neurite outgrowth. Can J Physiol Pharmacol 84:687–694. doi: 10.1139/Y06-025 PubMedCrossRefGoogle Scholar
  24. 24.
    Lowes VL, Ip NY, Wong YH (2002) Integration of signals from receptor tyrosine kinases and G protein-coupled receptors. Neurosignals 11:5–19. doi: 10.1159/000057317 PubMedCrossRefGoogle Scholar
  25. 25.
    Conway AM, Rakhit S, Pyne S et al (1999) Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochem J 337:171–177. doi: 10.1042/0264-6021:3370171 PubMedCrossRefGoogle Scholar
  26. 26.
    Rakhit S, Pyne S, Pyne NJ (2000) The platelet-derived growth factor receptor stimulation of p42/p44 mitogen-activated protein kinase in airway smooth muscle involves a G-protein-mediated tyrosine phosphorylation of Gab1. Mol Pharmacol 58:413–420PubMedGoogle Scholar
  27. 27.
    Rakhit S, Pyne S, Pyne NJ (2001) Nerve growth factor stimulation of p42/44 mitogen-activated protein kinase in PC12 cells: role of Gi/o, G protein-coupled receptor kinase 2, β-arrestin 1, and endocytic processing. Mol Pharmacol 60:63–70PubMedGoogle Scholar
  28. 28.
    Tsu RC, Ho MK, Yung LY et al (1997) Role of amino- and carboxyl-terminal regions of Gαz in the recognition of Gi-coupled receptors. Mol Pharmacol 52:38–45PubMedGoogle Scholar
  29. 29.
    Kobayashi M, Nagata S, Kita Y et al (1997) Expression of a constitutively active phosphatidylinositol 3-kinase induces process formation in rat PC12 cells. Use of Cre/loxP recombination system. J Biol Chem 272:16089–16092. doi: 10.1074/jbc.272.26.16089 PubMedCrossRefGoogle Scholar
  30. 30.
    Ashcroft M, Stephens RM, Hallberg B et al (1999) The selective and inducible activation of endogenous PI3-kinase in PC12 cells results in efficient NGF-mediated survival but defective neurite outgrowth. Oncogene 18:4586–4597. doi: 10.1038/sj.onc.1202814 PubMedCrossRefGoogle Scholar
  31. 31.
    York RD, Molliver DC, Grewal SS et al (2000) Role of phosphoinositide 3-kinase and endocytosis in nerve growth factor-induced extracellular signal-regulated kinase activation via Ras and Rap1. Mol Cell Biol 20:8069–8083. doi: 10.1128/MCB.20.21.8069-8083.2000 PubMedCrossRefGoogle Scholar
  32. 32.
    Coleman ES, Wooten MW (1994) Nerve growth factor-induced differentiation of PC12 cells employs the PMA-insensitive protein kinase C-zeta isoform. J Mol Neurosci 5:39–57. doi: 10.1007/BF02736693 PubMedCrossRefGoogle Scholar
  33. 33.
    Wooten MW, Vandenplas ML, Seibenhener ML et al (2001) Nerve growth factor stimulates multisite tyrosine phosphorylation and activation of the atypical protein kinase C’s via a src kinase pathway. Mol Cell Biol 21:8414–8427. doi: 10.1128/MCB.21.24.8414-8427.2001 PubMedCrossRefGoogle Scholar
  34. 34.
    Ma YC, Huang J, Ali S et al (2000) Src tyrosine kinase is a novel direct effector of G proteins. Cell 102:635–646. doi: 10.1016/S0092-8674(00)00086-6 PubMedCrossRefGoogle Scholar
  35. 35.
    Chan AS, Lai FP, Lo RK et al (2002) Melatonin mt1 and MT2 receptors stimulate c-Jun N-terminal kinase via pertussis toxin-sensitive and -insensitive G proteins. Cell Signal 14:249–257. doi: 10.1016/S0898-6568(01)00240-6 PubMedCrossRefGoogle Scholar
  36. 36.
    Zapf-Colby A, Eichhorn J, Webster NJ et al (1999) Inhibition of PLC-γ1 activity converts nerve growth factor from an anti-mitogenic to a mitogenic signal in CHO cells. Oncogene 18:4908–4919. doi: 10.1038/sj.onc.1202861 PubMedCrossRefGoogle Scholar
  37. 37.
    Solem M, McMahon T, Messing RO (1995) Depolarization-induced neurite outgrowth in PC12 cells requires permissive, low level NGF receptor stimulation and activation of calcium/calmodulin-dependent protein kinase. J Neurosci 15:5966–5975PubMedGoogle Scholar
  38. 38.
    Nakayama H, Numakawa T, Ikeuchi T et al (2001) Nicotine-induced phosphorylation of extracellular signal-regulated protein kinase and CREB in PC12h cells. J Neurochem 79:489–498. doi: 10.1046/j.1471-4159.2001.00602.x PubMedCrossRefGoogle Scholar
  39. 39.
    Ho MK, Wong YH (2001) Gz signaling: emerging divergence from Gi signaling. Oncogene 20:1615–1625. doi: 10.1038/sj.onc.1204190 PubMedCrossRefGoogle Scholar
  40. 40.
    Wise A, Watson-Koken MA, Rees S et al (1997) Interactions of the αA-adrenoceptor with multiple Gi-family G-proteins: studies with pertussis toxin-resistant G-protein mutants. Biochem J 321:721–728PubMedGoogle Scholar
  41. 41.
    Yung LY, Tso PH, Wu EHT et al (2008) Nerve growth factor-induced stimulation of p38 mitogen-activated protein kinase in PC12 cells is partially mediated via Gi/o proteins. Cell Signal 20:1538–1544. doi: 10.1016/j.cellsig.2008.04.007 PubMedCrossRefGoogle Scholar
  42. 42.
    Piiper A, Dikic I, Lutz MP et al (2002) Cyclic AMP induces transactivation of the receptors for epidermal growth factor and nerve growth factor, thereby modulating activation of MAP kinase, Akt, and neurite outgrowth in PC12 cells. J Biol Chem 277:43623–43630. doi: 10.1074/jbc.M203926200 PubMedCrossRefGoogle Scholar
  43. 43.
    Antonelli V, Bernasconi F, Wong YH et al (2000) Activation of B-Raf and regulation of the mitogen-activated protein kinase pathway by the Goα chain. Mol Biol Cell 11:1129–1142PubMedGoogle Scholar
  44. 44.
    Kinane TB, Kang I, Chu A et al (1997) Gαi2 mediates renal LLC-PK1 growth by a Raf-independent activation of p42/p44 MAP kinase. Am J Physiol 72:F273–F282Google Scholar
  45. 45.
    Lahlou H, Saint-Laurent N, Esteve JP et al (2003) sst2 Somatostatin receptor inhibits cell proliferation through Ras-, Rap1-, and B-Raf-dependent ERK2 activation. J Biol Chem 278:39356–39371. doi: 10.1074/jbc.M304524200 PubMedCrossRefGoogle Scholar
  46. 46.
    Nagao M, Yamauchi J, Kaziro Y et al (1998) Involvement of protein kinase C and Src family tyrosine kinase in Gαq/11-induced activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. J Biol Chem 273:22892–22898. doi: 10.1074/jbc.273.36.22892 PubMedCrossRefGoogle Scholar
  47. 47.
    Luttrell LM, Lefkowitz RJ (2002) The role of β-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 115:455–465PubMedGoogle Scholar
  48. 48.
    Kam AY, Chan AS, Wong YH (2003) Rac and Cdc42-dependent regulation of c-Jun N-terminal kinases by the delta-opioid receptor. J Neurochem 84:503–513. doi: 10.1046/j.1471-4159.2003.01535.x PubMedCrossRefGoogle Scholar
  49. 49.
    Hoshino M, Nakamura S (2003) Small GTPase Rin induces neurite outgrowth through Rac/Cdc42 and calmodulin in PC12 cells. J Cell Biol 163(5):1067–1076. doi: 10.1083/jcb.200308070 PubMedCrossRefGoogle Scholar
  50. 50.
    Troppmair J, Bruder JT, App H et al (1992) Ras controls coupling of growth factor receptors and protein kinase C in the membrane to Raf-1 and B-Raf protein serine kinases in the cytosol. Oncogene 7:1867–1873PubMedGoogle Scholar
  51. 51.
    Llovera M, de Pablo Y, Egea J et al (2004) Trk is a calmodulin-binding protein: implications for receptor processing. J Neurochem 88:422–433PubMedCrossRefGoogle Scholar
  52. 52.
    Agell N, Bachs O, Rocamora N et al (2002) Modulation of the Ras/Raf/MEK/ERK pathway by Ca2+ and calmodulin. Cell Signal 14:649–654. doi: 10.1016/S0898-6568(02)00007-4 PubMedCrossRefGoogle Scholar
  53. 53.
    Li X, Jope RS (1997) Glucocorticoids modulate G-protein α-subunit levels in PC12 cells. Brain Res 759:213–220. doi: 10.1016/S0006-8993(97)00256-4 PubMedCrossRefGoogle Scholar
  54. 54.
    Meng J, Casey PJ (2002) Activation of Gz attenuates Rap1-mediated differentiation of PC12 Cells. J Biol Chem 277:43417–43424. doi: 10.1074/jbc.M204074200 PubMedCrossRefGoogle Scholar
  55. 55.
    Uehara T, Hoshino S, Ui M et al (1994) Possible involvement of phosphatidylinositol-specific phospholipase C related to pertussis toxin-sensitive GTP-binding proteins during adipocyte differentiation of 3T3-L1 fibroblasts: negative regulation of protein kinase C. Biochim Biophys Acta 1224:302–310. doi: 10.1016/0167-4889(94)90204-6 PubMedCrossRefGoogle Scholar
  56. 56.
    Watkins DC, Johnson GL, Malbon CC (1992) Regulation of the differentiation of teratocarcinoma cells into primitive endoderm by Gαi2. Science 258:1373–1375. doi: 10.1126/science.1455234 PubMedCrossRefGoogle Scholar
  57. 57.
    Ogier-Denis E, Petiot A, Bauvy C et al (1997) Control of the expression and activity of the Gα-interacting protein (GAIP) in human intestinal cells. J Biol Chem 272:24599–24603. doi: 10.1074/jbc.272.39.24599 PubMedCrossRefGoogle Scholar
  58. 58.
    Aoki K, Nakamura T, Matsuda M (2004) Spatio-temporal regulation of Rac1 and Cdc42 activity during nerve growth factor-induced neurite outgrowth in PC12 cells. J Biol Chem 279:713–719. doi: 10.1074/jbc.M306382200 PubMedCrossRefGoogle Scholar
  59. 59.
    Yamauchi J, Tsujimoto G, Kaziro Y et al (2001) Parallel regulation of mitogen-activated protein kinase kinase 3 (MKK3) and MKK6 in Gq-signaling cascade. J Biol Chem 276:23362–23372. doi: 10.1074/jbc.M011752200 PubMedCrossRefGoogle Scholar
  60. 60.
    Luttrell LM, Kilgour E, Larner J et al (1990) A pertussis toxin-sensitive G-protein mediates some aspects of insulin action in BC3H-1 murine myocytes. J Biol Chem 265:16873–16879PubMedGoogle Scholar
  61. 61.
    Moughal NA, Waters CM, Valentine WJ et al (2006) Protean agonism of the lysophosphatidic acid receptor-1 with Ki16425 reduces nerve growth factor-induced neurite outgrowth in PC12 cells. J Neurochem 98:1920–1929. doi: 10.1111/j.1471-4159.2006.04009.x PubMedCrossRefGoogle Scholar
  62. 62.
    Wu EHT, Wong YH (2005) Pertussis toxin-sensitive Gi/o proteins are involved in nerve growth factor-induced pro-survival Akt signaling cascade in PC12 cells. Cell Signal 17:881–890. doi: 10.1016/j.cellsig.2004.11.008 PubMedCrossRefGoogle Scholar
  63. 63.
    Wu EHT, Wong YH (2006) Activation of muscarinic M4 receptor augments NGF-induced pro-survival Akt signaling in PC12 cells. Cell Signal 18:285–293. doi: 10.1016/j.cellsig.2005.04.009 PubMedCrossRefGoogle Scholar
  64. 64.
    Luttrell LM, Van Biesen T, Hawes BE et al (1995) G subunits mediate mitogen-activated protein kinase activation by the tyrosine kinase insulin-like growth factor 1 receptor. J Biol Chem 270:16495–16498. doi: 10.1074/jbc.270.28.16495 PubMedCrossRefGoogle Scholar
  65. 65.
    Hallak H, Seiler AEM, Green JS et al (2000) Association of heterotrimeric Gi with the insulin-like growth factor-I receptor. Release of G subunits upon receptor activation. J Biol Chem 275:2255–2258. doi: 10.1074/jbc.275.4.2255 PubMedCrossRefGoogle Scholar
  66. 66.
    Booth RA, Cummings C, Tiberi M et al (2002) GIPC participates in G protein signaling downstream of insulin-like growth factor 1 receptor. J Biol Chem 277:6719–6725. doi: 10.1074/jbc.M108033200 PubMedCrossRefGoogle Scholar
  67. 67.
    Lou X, Yano H, Lee F et al (2001) GIPC and GAIP form a complex with TrkA: a putative link between G protein and receptor tyrosine kinase pathways. Mol Biol Cell 12:615–627PubMedGoogle Scholar
  68. 68.
    Wang LH, Kalb RG, Strittmatter SM (1999) A PDZ protein regulates the distribution of the transmembrane semaphorin, M-SemF. J Biol Chem 274:14137–14146. doi: 10.1074/jbc.274.20.14137 PubMedCrossRefGoogle Scholar
  69. 69.
    Liu Z, Chatterjee TK, Fisher RA (2002) RGS6 interacts with SCG10 and promotes neuronal differentiation. Role of the Gγ subunit-like (GGL) domain of RGS6. J Biol Chem 277:37832–37839. doi: 10.1074/jbc.M205908200 PubMedCrossRefGoogle Scholar
  70. 70.
    Alderton F, Rakhit S, Kong KC et al (2001) Tethering of the platelet-derived growth factor beta receptor to G-protein-coupled receptors. A novel platform for integrative signaling by these receptor classes in mammalian cells. J Biol Chem 276:28578–28585. doi: 10.1074/jbc.M102771200 PubMedCrossRefGoogle Scholar
  71. 71.
    McDonald PH, Chow C-W, Miller WE et al (2000) β-Arrestin 2: a receptor-regulated MAPK scaffold for the activation of JNK3. Science 290:1574–1577. doi: 10.1126/science.290.5496.1574 PubMedCrossRefGoogle Scholar
  72. 72.
    Wu EHT, Wu KKH, Wong YH (2007) Tuberin: a stimulus-regulated tumor suppressor protein controlled by a diverse array of receptor tyrosine kinases and G protein-coupled receptors. Neurosignals 15:217–227. doi: 10.1159/000101333 CrossRefGoogle Scholar
  73. 73.
    New DC, Wong YH (2007) Molecular mechanisms mediating the G protein-coupled receptor regulation of cell cycle progression. J Mol Signal 2:2. doi: 10.1186/1750-2187-2-2
  74. 74.
    New DC, Wu KKH, Kwok AWS, Wong YH (2007) G protein-coupled receptor-induced Akt activity in cellular proliferation and apoptosis. FEBS J 274:6025–6036. doi: 10.1111/j.1742-4658.2007.06116.x PubMedCrossRefGoogle Scholar
  75. 75.
    Patapoutian A, Reichardt LF (2001) Trk receptors: mediators of neurotrophin action. Curr Opin Neurobiol 11:272–280. doi: 10.1016/S0959-4388(00)00208-7 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Prudence H. Tso
    • 1
  • Christina J. Morris
    • 1
  • Lisa Y. Yung
    • 1
  • Nancy Y. Ip
    • 1
  • Yung H. Wong
    • 1
    Email author
  1. 1.Department of Biochemistry, The Molecular Neuroscience Center, The Biotechnology Research InstituteHong Kong University of Science and TechnologyKowloonHong Kong, China

Personalised recommendations