Neurochemical Research

, Volume 34, Issue 6, pp 1089–1100 | Cite as

Detection, Purification and Identification of An Endogenous Inhibitor of l-Dopa Decarboxylase Activity from Human Placenta

  • Alice-Georgia Vassiliou
  • Emmanuel G. Fragoulis
  • Dido Vassilacopoulou
ORIGINAL PAPER

Abstract

An endogenous inhibitor of l-Dopa decarboxylase activity was identified and purified from human placenta. The endogenous inhibitor of l-Dopa decarboxylase (Ddc) was localized in the membrane fraction of placental tissue. Treatment of membranes with phosphatidylinositol-specific phospholipase C or proteinase K did not affect membrane-associated Ddc inhibitory activity, suggesting that a population of the inhibitor is embedded within membranes. Purification was achieved by extraction from a nondenaturing polyacrylamide gel. The purification scheme resulted in the isolation of a single 35 kDa band, bearing l-Dopa decarboxylase inhibitory activity. The purified inhibitor was identified as Annexin V. The elucidation of the biological importance of the presence of an l-Dopa decarboxylase activity inhibitor in normal human tissues could provide us with new information leading to the better understanding of the biological pathways that Ddc is involved in.

Keywords

Ddc Membrane Activity inhibitor Annexin V Placenta 

References

  1. 1.
    Lovenberg W, Weissbach H, Udenfriend S (1962) Aromatic L-amino acid decarboxylase. J Biol Res 237:89–93Google Scholar
  2. 2.
    Maneckjee R, Baylin SB (1983) Use of radiolabeled monofluoromethyl-Dopa to define the subunit structure of human l-Dopa decarboxylase. Biochemistry 22:6058–6063. doi:10.1021/bi00295a003 PubMedCrossRefGoogle Scholar
  3. 3.
    Ichinose H, Kojima K, Togari A, Kato Y, Parvez S, Parvez H, Nagatsu T (1985) Simple purification of aromatic l-amino acid decarboxylase from human pheochromocytoma using high-performance liquid chromatography. Anal Biochem 150:408–414. doi:10.1016/0003-2697(85)90529-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Dominici P, Tancini B, Barra D, Voltattorni CB (1987) Purification and characterization of rat-liver 3, 4-dihydroxyphenylalanine decarboxylase. Eur J Biochem 169:209–213. doi:10.1111/j.1432-1033.1987.tb13599.x PubMedCrossRefGoogle Scholar
  5. 5.
    Shirota K, Fujisawa H (1988) Purification and characterization of aromatic l-amino acid decarboxylase from rat kidney and monoclonal antibody to the enzyme. J Neurochem 51:426–434. doi:10.1111/j.1471-4159.1988.tb01056.x PubMedCrossRefGoogle Scholar
  6. 6.
    Nishigaki I, Ichinose H, Tamai K, Nagatsu T (1988) Purification of aromatic l-amino acid decarboxylase from bovine brain with a monoclonal antibody. Biochem J 252:331–335PubMedGoogle Scholar
  7. 7.
    Siow YL, Dakshinamurti K (1990) Purification of dopa decarboxylase from bovine striatum. Mol Cell Biochem 94:121–131. doi:10.1007/BF00214119 PubMedCrossRefGoogle Scholar
  8. 8.
    Mappouras DG, Stiakakis J, Fragoulis EG (1990) Purification and characterization of l-dopa decarboxylase from human kidney. Mol Cell Biochem 94:147–156. doi:10.1007/BF00214121 PubMedCrossRefGoogle Scholar
  9. 9.
    Berry MD, Juorio AV, Li XM, Boulton AA (1996) Aromatic l-amino acid decarboxylase: a neglected and misunderstood enzyme. Neurochem Res 21:1075–1087. doi:10.1007/BF02532418 PubMedCrossRefGoogle Scholar
  10. 10.
    Liu J, Zheng D, Zhou DY, Li QJ, Xiao SH, Yan J, Li Y, Xing YG (2004) Cloning and sequencing of human neuronal aromatic l-amino acid decarboxylase gene and its therapeutic effects on Parkinson’s disease. Chin J Clin Rehab 8:3893–3895Google Scholar
  11. 11.
    Mura A, Jackson D, Manley MS, Young SJ, Groves PM (1995) Aromatic l-amino acid decarboxylase immunoreactive cells in the rat striatum: a possible site for the conversion of exogenous l-Dopa to dopamine. Brain Res 704:51–60. doi:10.1016/0006-8993(95)01104-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Meredith GE, Farrell T, Kellaghan P, Tan Yun, Zahm DS, Totterdell S (1999) Immunocytochemical characterization of catecholaminergic neurons in the rat striatum following dopamine-depleting lesions. Eur J NeuroSci 11:3585–3596. doi:10.1046/j.1460-9568.1999.00774.x PubMedCrossRefGoogle Scholar
  13. 13.
    Ikemoto K (2004) Significance of human striatal d-neurons: implications in neuropsychiatric functions. Prog Neuro-Psychopharmacol Biol Psychol 28:429–434CrossRefGoogle Scholar
  14. 14.
    Lopez-Real A, Rodriguez-Pallares J, Guerra MJ, Labandeira-Garcia JL (2003) Localization and functional significance of striatal neurons immunoreactive to aromatic l-amino acid decarboxylase or tyrosine hydroxylase in rat Parkinsonian models. Brain Res 969:135–146. doi:10.1016/S0006-8993(03)02291-1 PubMedCrossRefGoogle Scholar
  15. 15.
    Gilbert JA, Bates LA, Ames MM (1995) Elevated aromatic-l-amino acid decarboxylase in human carcinoid tumors. Biochem Pharmacol 50:845–850. doi:10.1016/0006-2952(95)02006-X PubMedCrossRefGoogle Scholar
  16. 16.
    Watanabe H, Imaizumi M, Ojika T, Abe T, Hida T, Kato K (1994) Evaluation of biological characteristics of lung cancer by the human 28 kDa vitamin D-dependent calcium binding protein, calbindin-D28 k. Jpn J Clin Oncol 24:121–127PubMedGoogle Scholar
  17. 17.
    Koh T, Yokuta J, Ookawa K, Kina T, Koshimura K, Miwa S, Ariyasu T, Yamada H, Osaka M, Haga H (1995) Alternative splicing of the neurofibromatosis 1 gene correlates with growth patterns and neuroendocrine properties of human small-cell lung-carcinoma cells. Int J Cancer 60:843–847. doi:10.1002/ijc.2910600620 PubMedCrossRefGoogle Scholar
  18. 18.
    Buckland PR, Marshall R, Watkins P, McGuffin P (1997) Does phenylethylamine have a role in schizophrenia? LSD and PCP up-regulate aromatic l-amino acid decarboxylase mRNA levels. Brain Res Mol Brain Res 49:266–270. doi:10.1016/S0169-328X(97)00160-5 PubMedCrossRefGoogle Scholar
  19. 19.
    Baylin SB, Weisburger WR, Eggleston JC, Mendelsohn G, Beaven MA, Abeloff MD, Ettinger DS (1978) Variable content of histaminase, l-dopa decarboxylase and calcitonin in small-cell carcinoma of the lung. Biologic and clinical implications. N Engl J Med 299:105–110PubMedGoogle Scholar
  20. 20.
    Ichinose H, Ohye T, Fujita K, Pantucek F, Lange K, Riederer P, Nagatsu T (1994) Quantification of mRNA of tyrosine hydroxylase and aromatic l-amino acid decarboxylase in the substantia nigra in Parkinson’s disease and schizophrenia. J Neural Transm Park Dis Dement Sect 8:149–158. doi:10.1007/BF02250926 PubMedCrossRefGoogle Scholar
  21. 21.
    Daadi MM, Pivirotto P, Bringas J, Cunningham J, Forsayeth J, Eberling J, Bankiewicz KS (2006) Distribution of AAV2-hAADC-transduced cells after 3 years in Parkinsonian monkeys. NeuroReport 17:201–204. doi:10.1097/01.wnr.0000198952.38563.05 PubMedCrossRefGoogle Scholar
  22. 22.
    Rahman MK, Togari A, Kojima K, Takahashi K, Nagatsu T (1984) Presence of endogenous inhibitor of aromatic l-amino acid decarboxylase in monkey serum. Mol Cell Biochem 63:53–58. doi:10.1007/BF00230161 PubMedGoogle Scholar
  23. 23.
    Hashimoto S, Ikeno T, Hasegawa J, Nagatsu T, Kuzuya H (1980) Endogenous inhibitors of DOPA decarboxylase in rat submandibular gland. Arch Oral Biol 25:195–199. doi:10.1016/0003-9969(80)90020-5 PubMedCrossRefGoogle Scholar
  24. 24.
    Bradford MM (1976) A rapid and sensitive method for quantitation of microgram quantities of protein utilising the principle of protein dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  25. 25.
    Fragoulis EG, Sekeris CE (1975) Purification and characteristics of DOPA-decarboxylase from the integument of Calliphora vicina larve. Arch Biochem Biophys 168:15–25. doi:10.1016/0003-9861(75)90223-4 PubMedCrossRefGoogle Scholar
  26. 26.
    Ramwani J, Mishra J (1986) Purification of bovine striatal dopamine d-2 receptor by affinity chromatography. J Biol Chem 261:8894–8898PubMedGoogle Scholar
  27. 27.
    Bordier C (1981) Phase separation of integral membrane proteins in Triton X-114 solution. J Biol Chem 256:1604–1607PubMedGoogle Scholar
  28. 28.
    Kuhn DM, Arthur Junior R, Yoon H, Sankaran K (1990) Tyrosine hydroxylase in secretory granules from bovine adrenal medulla. J Biol Chem 265:5780–5786PubMedGoogle Scholar
  29. 29.
    Hooper NM, Bashir A (1991) Glycosyl-phosphatidylinositol-anchored membrane proteins can be distinguished from transmembrane polypeptide-anchored proteins by differential solubilization and temperature-induced phase separation in Triton X-114. Biochem J 280:745–751PubMedGoogle Scholar
  30. 30.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 22:680–685. doi:10.1038/227680a0 CrossRefGoogle Scholar
  31. 31.
    Batteiger B, Newhall WJ, 5th, Jones RB (1982) The use of Tween-20 as a blocking agent in the immunological detection of proteins transferred to nitrocellulose membranes. J Immunol Methods 55:297–307. doi:10.1016/0022-1759(82)90089-8 PubMedCrossRefGoogle Scholar
  32. 32.
    Poulikakos P, Vassilacopoulou D, Fragoulis EG (2001) L-DOPA decarboxylase association with membranes in mouse brain. Neurochem Res 26:479–485. doi:10.1023/A:1010952610387 PubMedCrossRefGoogle Scholar
  33. 33.
    Maher PA, Singer SJ (1985) Anomalous interaction of acetylcholine receptor protein with the nonionic detergent Triton X-114. Proc Natl Acad Sci USA 82:958–962. doi:10.1073/pnas.82.4.958 PubMedCrossRefGoogle Scholar
  34. 34.
    Pryde JG, Phillips JH (1986) Fractionation of membrane proteins by temperature-induced separation in Triton X-114. Biochem J 233:525–533PubMedGoogle Scholar
  35. 35.
    Mroczkowski B, Reich M, Chen K, Bell GI, Cohen S (1989) Recombinant human epidermal growth factor precursor is a glycosylated membrane protein with biological activity. Mol Cell Biol 9:2771–2778PubMedGoogle Scholar
  36. 36.
    Olsen M, Krog L, Edvardsen K, Skovgaard LT, Bock E (1993) Intact transmembrane isoforms of the neural cell adhesion molecule are released from the plasma membrane. Biochem J 295:833–840PubMedGoogle Scholar
  37. 37.
    Papa V, Russo P, Gliozzo B, Goldfine ID, Vigneri R, Pezzino V (1993) An intact and functional soluble form of the insulin receptor is secreted by cultured cells. Endocrinology 133:1369–1376. doi:10.1210/en.133.3.1369 PubMedCrossRefGoogle Scholar
  38. 38.
    Vassilacopoulou D, Ripellino JA, Tezapsidis N, Hook VY, Robakis NK (1995) Full-length and truncated Alzheimer amyloid precursors in chromaffin granules: solubilization of membrane amyloid precursor is mediated by an enzymatic mechanism. J Neurochem 64:2140–2146PubMedCrossRefGoogle Scholar
  39. 39.
    Siaterli MZ, Vassilacopoulou D, Fragoulis EG (2003) Cloning and expression of human placental l-Dopa decarboxylase. Neurochem Res 28:797–803. doi:10.1023/A:1023246620276 PubMedCrossRefGoogle Scholar
  40. 40.
    Vassiliou A, Vassilacopoulou D, Fragoulis EG (2005) Purification of an endogenous inhibitor of l-dopa decarboxylase activity from human serum. Neurochem Res 30:641–649. doi:10.1007/s11064-005-2752-7 PubMedCrossRefGoogle Scholar
  41. 41.
    Okuno S, Fujisawa H (1991) Conversion of tyrosine hydroxylase to stable and inactive form by the end products. J Neurochem 57:53–60. doi:10.1111/j.1471-4159.1991.tb02098.x PubMedCrossRefGoogle Scholar
  42. 42.
    Mogi M, Kojima K, Nagatsu T (1984) Detection of inactive or less active forms of tyrosine hydroxylase in human adrenals by a sandwich enzyme immunoassay. Anal Biochem 138:125–132. doi:10.1016/0003-2697(84)90779-6 PubMedCrossRefGoogle Scholar
  43. 43.
    Reutelingsperger CP, Hornstra G, Hemker HC (1985) Isolation and partial purification of a novel anticoagulant from arteries of human umbilical cord. Eur J Biochem 151:625–629. doi:10.1111/j.1432-1033.1985.tb09150.x PubMedCrossRefGoogle Scholar
  44. 44.
    Tait JF, Gibson D (1992) Phospholipid binding of annexin V: effects of calcium and membrane phosphatidylserine content. Arch Biochem Biophys 298:187–191. doi:10.1016/0003-9861(92)90111-9 PubMedCrossRefGoogle Scholar
  45. 45.
    Thiagarajan P, Tait JF (1991) Collagen-induced exposure of anionic phospholipid in platelets and platelet-derived microparticles. J Biol Chem 266:24302–24307PubMedGoogle Scholar
  46. 46.
    Ahn NG, Teller DC, Bienkowski MJ, McMullen BA, Lipkin EW, de Haen C (1988) Sedimentation equilibrium analysis of five lipocortin-related phospholipase A2 inhibitors from human placenta. Evidence against a mechanistically relevant association between enzyme and inhibitor. J Biol Chem 263:18657–18663PubMedGoogle Scholar
  47. 47.
    Iwasaki A, Suda M, Nakao H, Nagoya T, Saino Y, Arai K, Mizoguchi T, Sato F, Yoshizaki H, Hirata M (1987) Structure and expression of cDNA for an inhibitor of blood coagulation isolated from human placenta: a new lipocortin-like protein. J Biochem 102:1261–1273PubMedGoogle Scholar
  48. 48.
    Chap H, Comfurius P, Bevers EM, Fauvel J, Vicendo P, Douste-Blazy L, Zwaal RF (1988) Potential anticoagulant activity of lipocortins and other calcium/phospholipid binding proteins. Biochem Biophys Res Commun 150:972–978. doi:10.1016/0006-291X(88)90724-3 PubMedCrossRefGoogle Scholar
  49. 49.
    Funakoshi T, Hendrickson LE, McMullen BA, Fujikawa K (1987) Primary structure of human placental anticoagulant protein. Biochemistry 26:8087–8092. doi:10.1021/bi00399a011 PubMedCrossRefGoogle Scholar
  50. 50.
    Kondo S, Noguchi M, Funakoshi T, Fujikawa K, Kisiel W (1987) Inhibition of human factor VIIa-tissue factor activity by placental anticoagulant protein. Thromb Res 48:449–459. doi:10.1016/0049-3848(87)90402-6 PubMedCrossRefGoogle Scholar
  51. 51.
    Maurer-Fogy ICP, Reutelingsperger J, Pieters G, Bodo Stratowa C, Hauptmann R (1988) Cloning and expression of cDNA for human vascular anticoagulant, a Ca2+-dependent phospholipid-binding protein. Eur J Biochem 174:585–592. doi:10.1111/j.1432-1033.1988.tb14139.x PubMedCrossRefGoogle Scholar
  52. 52.
    Gramzinski RA, Broze GJ, Carson SD (1989) Human fibroblast tissue factor is inhibited by lipoprotein-associated coagulation inhibitor and placental anticoagulant protein but not by apolipoprotein A-II. Blood 73:983–989PubMedGoogle Scholar
  53. 53.
    Romisch J, Grote M, Weithmann KU, Heimburger N, Amann E (1990) Annexin proteins PP4 and PP4-X. Comparative characterization of biological activities of placental and recombinant proteins. Biochem J 272:223–229PubMedGoogle Scholar
  54. 54.
    Carreno-Mulle E, Herrera AJ, de Pablos RM, Tomas-Camardiel M, Venero JL, Cano J, Machado A (2003) Thrombin induces in vivo degeneration of nigral dopaminergic neurones along with the activation of microglia. J Neurochem 84:1201–1214. doi:10.1046/j.1471-4159.2003.01634.x CrossRefGoogle Scholar
  55. 55.
    Gilbert JA, Frederick LM, Ames MM (2000) The aromatic-l-amino acid decarboxylase inhibitor carbidopa is selectively cytotoxic to human pulmonary carcinoid and small cell lung carcinoma cells. Clin Cancer Res 6:4365–4372PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Alice-Georgia Vassiliou
    • 1
  • Emmanuel G. Fragoulis
    • 1
  • Dido Vassilacopoulou
    • 1
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of AthensAthensGreece

Personalised recommendations