Neurochemical Research

, 34:1076 | Cite as

Hypoinsulinemia Alleviates the Grf1/Ras/Akt Anti-Apoptotic Pathway and Induces Alterations of Mitochondrial Ras Trafficking in Neuronal Cells

  • E. Zhuravliova
  • T. Barbakadze
  • N. Narmania
  • M. Sepashvili
  • D. G. MikeladzeEmail author


Recent observations have established that interruption of insulin production causes deficits in learning and memory formation. We have studied the mechanism of insulin’s neuroprotective effect on primary neuronal cells and in streptozotocin (STZ)-induced diabetic rat brain. We have found that in hippocampal neuronal cells insulin increases the content of farnesylated Ras and phosphorylated form of Akt. Besides, the treatment of cells by insulin leads to the activation of mitochondrial cytochrome oxidase, which is inhibited by manumycin, a farnesyltransferase inhibitor. During experimental diabetes, the content of membrane-bound GRF1 was decreased in rat hippocampus that was correlated with the reduction in mitochondrial Ras and phosphorylated forms of Akt. This redistribution in Ras-GRF system was accompanied by the alteration in the activities of CREB, NF-kB (p65) and c-Rel transcription factors. We have proposed that hypoinsulinemia induces the inhibition of Ras signalling in the neuronal cells additionally by abnormality of Ras trafficking into mitochondria.


Neuroprotection Insulin GRF1/Ras signaling pathways Mitochondria 


  1. 1.
    Gispen WH, Biessels G-J (2000) Cognition and synaptic plasticity indiabetes mellitus. Trends Neurosci 23:542–549. doi: 10.1016/S0166-2236(00)01656-8 PubMedCrossRefGoogle Scholar
  2. 2.
    Park CR (2001) Cognitive effects of insulin in the central nervous system. Neurosci Biobehav Rev 25:311–323. doi: 10.1016/S0149-7634(01)00016-1 PubMedCrossRefGoogle Scholar
  3. 3.
    White MF (1998) The IRS-signalling system: a network of docking proteins that mediate insulin action. Mol Cell Biochem 182:3–11. doi: 10.1023/A:1006806722619 PubMedCrossRefGoogle Scholar
  4. 4.
    Taha C, Klip A (1999) The insulin signaling pathway. J Membr Biol 169:1–12. doi: 10.1007/PL00005896 PubMedCrossRefGoogle Scholar
  5. 5.
    White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40:2–17. doi: 10.1007/s001250051387 CrossRefGoogle Scholar
  6. 6.
    Mitin M, Rossman KL, Der CJ (2005) Signaling interplay in Ras superfamily function. Curr Biol 15:563–574. doi: 10.1016/j.cub.2005.07.010 CrossRefGoogle Scholar
  7. 7.
    Wei W, Schreiber SS, Baudry M et al (1993) Localization of the cellular expression pattern of cdc25NEF and ras in the juvenile rat brain. Brain Res Mol Brain Res 19:339–344. doi: 10.1016/0169-328X(93)90136-D PubMedCrossRefGoogle Scholar
  8. 8.
    Orban PC, Chapman PF, Brambilla R (1999) Is the Ras––MAPK signalling pathway necessary for long-term memory formation? Trends Neurosci 22:38–44. doi: 10.1016/S0166-2236(98)01306-X PubMedCrossRefGoogle Scholar
  9. 9.
    Zhuravliova E, Barbakadze T, Natsvlishvili N, Mikeladze DG (2007) Haloperidol induces neurotoxicity by the NMDA receptor downstream signaling pathway, alternative from glutamate excitotoxicity. Neurochem Int 50(7–8):976–982. doi: 10.1016/j.neuint.2006.09.015 PubMedCrossRefGoogle Scholar
  10. 10.
    Sondermann H, Soisson S, Boykevisch SM et al (2004) Structural analysis of autoinhibition in the Ras activator Son of sevenless. Cell 119:393–405. doi: 10.1016/j.cell.2004.10.005 PubMedCrossRefGoogle Scholar
  11. 11.
    Walker SA, Lockyer PJ (2004) Visualizing Ras signalling in real-time. J Cell Sci 117(14):2879–2886. doi: 10.1242/jcs.01285 PubMedCrossRefGoogle Scholar
  12. 12.
    Lommerse PHM, Snaar-Jagalska E, Herman P et al (2005) Singlemolecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation. J Cell Sci 118:1799–1809. doi: 10.1242/jcs.02300 PubMedCrossRefGoogle Scholar
  13. 13.
    Chiu VK, Bivona T, Hach A et al (2002) Ras signalling on the endoplasmic reticulum and the Golgi. Nat Cell Biol 4:343–350PubMedGoogle Scholar
  14. 14.
    Goodwin JS, Drake KR, Rogers C et al (2005) Depalmitoylated Ras traffics to and from the Golgi complex via a nonvesicular pathway. J Cell Biol 170:261–272. doi: 10.1083/jcb.200502063 PubMedCrossRefGoogle Scholar
  15. 15.
    Roy S, Plowman S, Rotblat B et al (2005) Individual palmitoyl residues serve distinct roles in HRas trafficking, microlocalization, and signaling. Mol Cell Biol 25:6722–6733. doi: 10.1128/MCB.25.15.6722-6733.2005 PubMedCrossRefGoogle Scholar
  16. 16.
    Quilliam LA, Rebhun JF, Castro AF (2002) A growing family of guanine nucleotide exchange factors is responsible for activation of Ras-family GTPases. Prog Nucleic Acid Res Mol Biol 71:391–444. doi: 10.1016/S0079-6603(02)71047-7 PubMedCrossRefGoogle Scholar
  17. 17.
    Kocher HM, Senkus R, Al-Nawab M et al (2005) Subcellular distribution of Ras GTPase isoforms in normal human kidney. Nephrol Dial Transplant 20:886–891. doi: 10.1093/ndt/gfh744 PubMedCrossRefGoogle Scholar
  18. 18.
    Rebollo A, Perez-Sala D, Martinez AC (1999) Bcl-2 differentially targets K-, N- and H-Ras to mitochondria in IL-2 supplemented or deprived cells: implications in prevention of apoptosis. Oncogene 18:4930–4939. doi: 10.1038/sj.onc.1202875 PubMedCrossRefGoogle Scholar
  19. 19.
    Wang G, Deschenes RJ (2006) Plasma membrane localization of Ras requires class C Vps proteins and functional mitochondria in Saccharomyces cerevisiae. Mol Cell Biol 26(8):3243–3255. doi: 10.1128/MCB.26.8.3243-3255.2006 PubMedCrossRefGoogle Scholar
  20. 20.
    Zheng WH, Quirion R (2004) Comparative signaling pathways of insulin-like growth factor-1 and brain-derived neurotrophic factor in hippocampal neurons and the role of the PI3 kinase pathway in cell survival. J Neurochem 89(4):844–852. doi: 10.1111/j.1471-4159.2004.02350.x PubMedCrossRefGoogle Scholar
  21. 21.
    Goalstone ML, Leitner JW, Wall K et al (1998) Effect of insulin on farnesyltransferase specificity of insulin action and potentiation on nuclear effects of insulin-like growth factor-1, epidermal growth factor and platelet-derived growth factor. J Biol Chem 273:23892–23896. doi: 10.1074/jbc.273.37.23892 PubMedCrossRefGoogle Scholar
  22. 22.
    Philips MR (2006) Compartmentalized signalling of Ras. Biochem Soc Trans 33:657–661Google Scholar
  23. 23.
    Gotoh T, Tian X, Feig LA (2001) Prenylation of target GTPases contributes to signaling specificity of Ras-guanine nucleotide exchange factors. J Biol Chem 276(41):38029–38035PubMedGoogle Scholar
  24. 24.
    van der Heide LP, Kamal A, Artola A et al (2005) Insulin modulates hippocampal activity-dependent synaptic plasticity in a N-methyl-d-aspartate receptor and phosphatidyl-inositol-3-kinase-dependent manner. J Neurochem 94(4):1158–1166. doi: 10.1111/j.1471-4159.2005.03269.x PubMedCrossRefGoogle Scholar
  25. 25.
    Butler AA, Yakar S, Gewolb IH et al (1998) Insulin-like growth factor-I receptor signal transduction: at the interface between physiology and cell biology. Comp Biochem Physiol B Biochem Mol Biol 121:19–26. doi: 10.1016/S0305-0491(98)10106-2 PubMedCrossRefGoogle Scholar
  26. 26.
    Wang JQ, Fibuch EE, Limin Mao L (2007) Regulation of mitogen-activated protein kinases by glutamate receptors. J Neurochem 100(1):1–11. doi: 10.1111/j.1471-4159.2006.04208.x PubMedCrossRefGoogle Scholar
  27. 27.
    Mastrocola R, Restivo F, Vercellinatto I, Danni O et al (2005) Oxidative and nitrosative stress in brain mitochondria of diabetic rats. J Endocrinol 187:37–44. doi: 10.1677/joe.1.06269 PubMedCrossRefGoogle Scholar
  28. 28.
    Matsunaga A, Nomura Y, Kuroda S et al (1998) Energy-dependent redox state of heme a + a3 and copper of cytochrome oxidase in perfused rat brain in situ. Am J Physiol 275:1022–1030Google Scholar
  29. 29.
    Raza H, Prabu SK, Robin M-A et al (2004) Elevated mitochondrial cytochrome P450 2E1 and glutathione S-transferase A4–4 in streptozotocin-induced diabetic rats. Diabetes 53:185–194. doi: 10.2337/diabetes.53.1.185 PubMedCrossRefGoogle Scholar
  30. 30.
    Stacey DW, Watson T, Kung H-F et al (1987) Microinjection of transforming ras protein induces c-fos expression. Mol Cell Biol 7:523–527PubMedGoogle Scholar
  31. 31.
    Vanhoutte P, Barnier JV, Guibert B et al (1999) Glutamate induces phosphorylation of Elk-1 and CREB, along with c-fos activation via an extracellular signal-regulated kinase-dependent pathway in brain slices. Mol Cell Biol 19:136–146PubMedGoogle Scholar
  32. 32.
    Levenson JM, Choi S, Lee S-Y et al (2004) A bioinformatics analysis of memory consolidation reveals involvement of the transcription factor c-Rel. J Neurosci Res 24(16):3933–3943. doi: 10.1523/JNEUROSCI.5646-03.2004 Google Scholar
  33. 33.
    Kaczmarek L (1993) Molecular biology of vertebrate learning: is c-fos a new beginning? J Neurosci Res 34:377–381. doi: 10.1002/jnr.490340402 PubMedCrossRefGoogle Scholar
  34. 34.
    Heck S, Lezoualc’h F, Engert S et al (1999) Insulin-like growth factor-1-mediated neuroprotection against oxidative stress is associated with activation of nuclear factor kappaB. J Biol Chem 274:9828–9835. doi: 10.1074/jbc.274.14.9828 PubMedCrossRefGoogle Scholar
  35. 35.
    Pizzi M, Goffi F, Boroni F et al (2002) Opposing roles for NF-B/Rel factors p65 and c-Rel in the modulation of neuron survival elicited by glutamate and interleukin-1. J Biol Chem 277(23):20717–20723. doi: 10.1074/jbc.M201014200 PubMedCrossRefGoogle Scholar
  36. 36.
    Koulich E, Nguyen T, Johnson K et al (2001) NF-kB is involved in the survival of cerebellar granule neurons: association of IkBb phosphorylation with cell survival. J Neurochem 76:1188–1198. doi: 10.1046/j.1471-4159.2001.00134.x PubMedCrossRefGoogle Scholar
  37. 37.
    Sarmiere PD, Freeman RS (2001) Analysis of the NF-kappa B and PI 3-kinase/Akt survival pathways in nerve growth factor-dependent neurons. Mol Cell Neurosci 18:320–331. doi: 10.1006/mcne.2001.1021 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • E. Zhuravliova
    • 1
  • T. Barbakadze
    • 1
  • N. Narmania
    • 1
  • M. Sepashvili
    • 1
  • D. G. Mikeladze
    • 1
    • 2
    Email author
  1. 1.Department of BiochemistryI.Beritashvili Institute of PhysiologyTbilisiGeorgia
  2. 2.Faculty of Life SciencesI.Chavchavadze State UniversityTbilisiGeorgia

Personalised recommendations