Neurochemical Research

, Volume 34, Issue 4, pp 601–629

Dopamine and Aging: Intersecting Facets

Review Article

Abstract

Aging encompasses life itself so understanding requires frameworks that forge unity amidst complexity. The free radical theory of aging is one example. The original focus on damage was augmented recently by appreciation that reactive oxygen and nitrogen species are essential to normal signaling and cell function. This paradigm is currently undergoing an explosive expansion fueled by the discovery that regulatory organization is a merry-go-round of redox cycling seamlessly fused to endogenous clocks. This might best be described as an “Electroplasmic Cycle.” This is certainly applicable to dopaminergic neurons with their exceptional metabolic, electrical and rhythmic properties. Here I review normal aging of dopamine systems to highlight them as a valuable model. I then examine the possible integration of free radical and ion channel theories of aging. Finally, I incorporate clocks and explore the multifaceted implications of electroplasmic cycles with special emphasis on dopamine.

Keywords

Dopamine Aging Longevity Redox Free radicals Ion channels Clocks Regulation Electroplasmic cycle Evolutionary theory 

Abbreviations

ATr1

Angiotensin receptor 1

CBP

CREB binding protein

Cry

Cryptochrome

DA

Dopamine

DAT

Dopamine transport and reuptake protein

DAr1

Dopamine receptor 1

DAr2

Dopamine receptor 2

ER

Endoplasmic reticulum

GH

Growth hormone

GHRH

Growth hormone releasing hormone

GSH

Reduced glutathione

GSH-S-TR

Glutathione S-transferase

GSSG

Oxidized glutathione

HO-1

Heme oxygenase 1

HPA

Hypothalamic–pituitary–adrenal axis

HVA

Homovanillic acid

IGF-1

Insulin-like growth factor 1

L-DOPA

l-Dihydroxyphenylalanine

LTP

Long-term potentiation

MAO

Monoamine oxidase

NE

Norepinephrine

NO

Nitric oxide

NOS

Nitric oxide synthase

NOX

NAD(P)H oxidases

NPAS2

Neuronal PAS domain protein 2

PD

Parkinson’s disease

Per

Period

PKA

Protein kinase A

RONS

Reactive oxygen and nitrogen species

SAM

S-adenosylhomocysteine

SN

Substantia nigra

SOR

Superoxide

SOD

Superoxide dismutase

SCN

Suprachiasmatic nuclei

SUR

Sulfonylurea receptors

TN

Tyrosine hydroxylase

VMAT2

Vesicular monoamine transporter 2

References

  1. 1.
    Rollo CD (1994) Phenotypes: their epigenetics, ecology and evolution. Chapman and Hall, London, pp 1–463Google Scholar
  2. 2.
    Finch CE (1990) Longevity, senescence and the genome. University of Chicago Press, Chicago, pp 1–922Google Scholar
  3. 3.
    Knoll J (1988) The striatal dopamine dependency of life span in male rats. Longevity study with (−)deprenyl. Mech Ageing Dev 46:237–262CrossRefGoogle Scholar
  4. 4.
    Cardozo-Pelaez F, Brooks PJ, Stedeford T et al (2000) DNA damage, repair, and antioxidant systems in brain regions: a correlative study. Free Radical Biol Med 28:779–785CrossRefGoogle Scholar
  5. 5.
    Reeves S, Bench C, Howard R (2002) Ageing and the nigrostiatal dopaminergic system. Int J Geriatr Psychiatry 17:359–370CrossRefGoogle Scholar
  6. 6.
    Evans MD, Dizdaroglu M, Cooke MS (2004) Oxidative DNA damage and disease: induction, repair and significance. Mut Res 567:1–61Google Scholar
  7. 7.
    Thomas B, Beal MF (2007) Parkinson’s disease. Human Mol. Genet 16:R183–R194CrossRefGoogle Scholar
  8. 8.
    Halliwell B (2006) Proteasomal dysfunction: a common feature of neurodegenerative diseases? Implications for the environmental origins of neurodegeneration. Antioxid Redox Signal 8:2007–2019PubMedCrossRefGoogle Scholar
  9. 9.
    Luo Y, Roth GS (2000) The roles of dopamine oxidative stress and dopamine receptor signaling in aging and age-related neurodegeneration. Antiox Redox Signal 2:449–460CrossRefGoogle Scholar
  10. 10.
    Greene JG, Dingledine R, Greenamyre JT (2005) Gene expression profiling of rat midbrain dopamine neurons: implications for selective vulnerability in parkinsonism. Neurobiol Dis 18:19–31PubMedCrossRefGoogle Scholar
  11. 11.
    Schipper HM, Liberman A, Stopa EG (1998) Neural heme oxygenase-1 expression in idiopathic Parkinson’s disease. Exp Neurol 150:60–68PubMedCrossRefGoogle Scholar
  12. 12.
    Gao HM, Liu B, Hong JS (2003) Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 23:6181–6187PubMedGoogle Scholar
  13. 13.
    Borges CR, Geddes T, Watson JT et al (2002) Dopamine biosynthesis is regulated by S-glutathionylation: potential mechanism of tyrosine hydroxylase inhibition during oxidative stress. J Biol Chem 277:48295–48302PubMedCrossRefGoogle Scholar
  14. 14.
    Neckameyer WS, Woodrome S, Holt B et al (2000) Dopamine and senescence in Drosophila melanogaster. Neurobiol Aging 21:145–152PubMedCrossRefGoogle Scholar
  15. 15.
    De La Cruz CP, Revilla E, Venero JL et al (1996) Oxidative inactivation of tyrosine hydroxylase in substantia nigra of aged rat. Free Radical Biol Med 20:53–61CrossRefGoogle Scholar
  16. 16.
    Goudsmit E, Feenstra MGP, Swaab DF (1990) Central monoamine metabolism in the male brown-Norway rat in relation to aging and testosterone. Brain Res Bull 25:755–763PubMedCrossRefGoogle Scholar
  17. 17.
    Cruz-Muros I, Afonso-Oramas D, Abreu P et al (2007) Aging of the rat mesostriatal system: Differences between the nigrostriatal and the mesolimbic compartments. Exp Neurol 204:147–161PubMedCrossRefGoogle Scholar
  18. 18.
    Morgan DG, May PC, Finch CE (1987) Dopamine and serotonin systems in human and rodent brain: effects of age and neurodegenerative disease. J Am Geriatr Soc 35:334–345PubMedGoogle Scholar
  19. 19.
    McGeer PL, McGeer EG, Suzuki JS (1977) Aging and extrapyramidal function. Arch Neurol 34:33–35PubMedGoogle Scholar
  20. 20.
    Fearnley JM, Lees AJ (1991) Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain 114:2283–2301PubMedCrossRefGoogle Scholar
  21. 21.
    Ma SY, Roytt M, Collan Y et al (1999) Unbiased morphometrical measurements show loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol 25:394–399PubMedCrossRefGoogle Scholar
  22. 22.
    Stark AK, Pakkenberg B (2004) Histological changes of the dopaminergic nigrostriatal system in aging. Cell Tissue Res 318:81–92PubMedCrossRefGoogle Scholar
  23. 23.
    Backman L, Nyberg L, Lindenberger U et al (2006) The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neurosci Biobehav Rev 30:791–807PubMedCrossRefGoogle Scholar
  24. 24.
    Beach TG, Sue LI, Walker DG et al (2007) Marked microglial reaction in normal aging human substantia nigra: correlation with extraneuronal neuromelanin pigment deposits. Acta Neuropathol 114:419–424PubMedCrossRefGoogle Scholar
  25. 25.
    Backman L, Farbe L (2004) The role of dopamine systems in cognitive aging. In: Cabeza R, Nyberg L, Park D (eds) Cognitive neuroscience of aging: linking cognitive and cerebral aging. Oxford University Press, New York, pp 58–84Google Scholar
  26. 26.
    Wu DC, Teismann P, Tieu K et al (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine model of Parkinson’s disease. PNAS 100:6145–6150PubMedCrossRefGoogle Scholar
  27. 27.
    Ross GW, Petrovitch H, Abbott RD et al (2004) Parkinsonian signs and substantia nigra neuron density in decendents elders without PD. Ann Neurol 56:532–539PubMedCrossRefGoogle Scholar
  28. 28.
    Rudow G, O’Brien R, Savonenko AV et al (2008) Morphometry of the human substantia nigra in ageing and Parkinson’s disease. Acta Neuropathol (Online). doi:10.1007/s00401-008-0352-8
  29. 29.
    Cabello CR, Thune JJ, Pakkenberg H et al (2002) Ageing of substantia nigra in humans: cell loss may be compensated by hypertrophy. Neuropathol Appl Neurobiol 28:283–291PubMedCrossRefGoogle Scholar
  30. 30.
    Kubis N, Faucheux BA, Ransmayr G et al (2000) Preservation of midbrain catecholaminergic neurons in very old human subjects. Brain 123:366–373PubMedCrossRefGoogle Scholar
  31. 31.
    Wolf ME, LeWitt PA, Bannon MJ et al (1991) Effect of aging on tyrosine hydroxylase protein content and the relative number of dopamine nerve terminals in human caudate. J Neurochem 56:1191–1200PubMedCrossRefGoogle Scholar
  32. 32.
    Eidelberg D, Takikawa S, Dhawan V et al (1993) Striatal 18F-dopa uptake: absence of an aging effect. J Cereb Blood Flow Metab 13:881–888PubMedGoogle Scholar
  33. 33.
    Rapp PR, Gallagher M (1996) Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. PNAS 93:9926–9930PubMedCrossRefGoogle Scholar
  34. 34.
    Rapp PR, Deroche PS, Mao Y et al (2002) Neuron number in the parahippocampal region is preserved in aged rats with spatial learning deficits. Cerebral Cortex 12:1171–1179PubMedCrossRefGoogle Scholar
  35. 35.
    Keuker JIH, Luiten PGM, Fuchs E (2003) Preservation of hippocampal neuron numbers in aged rhesus monkeys. Neurobiol Aging 24:157–165PubMedCrossRefGoogle Scholar
  36. 36.
    McCormack AL, Di Monte DA, Delfani K et al (2004) Aging of the nigrostriatal system in the squirrel monkey. J Comp Neurol 471:387–395PubMedCrossRefGoogle Scholar
  37. 37.
    Dickstein DL, Kabaso D, Rocher AB et al (2007) Changes in the structural complexity of the aged brain. Aging Cell 6:275–284PubMedCrossRefGoogle Scholar
  38. 38.
    Toescu EC, Verkhratsky A (2007) The importance of being subtle: small changes in calcium homeostasis control cognitive decline in normal aging. Aging Cell 6:267–273PubMedCrossRefGoogle Scholar
  39. 39.
    Peters A, Rosene DL, Moss MB et al (1996) Neurobiological bases of age-related cognitive decline in the rhesus monkey. J Neuropathol Exp Neurol 55:861–874PubMedGoogle Scholar
  40. 40.
    Pakkenberg H, Anderson BB, Burns RS et al (1995) A stereological study of substantia nigra in young and old rhesus monkeys. Brain Res 693:201–206PubMedCrossRefGoogle Scholar
  41. 41.
    Javoy-Agid F, Hirsch EC, Dumas S et al (1990) Decreased tyrosine hydroxylase messenger RNA in the surviving dopamine neurons of the substantia nigra in Parkinson’s disease: an in situ hybridization study. Neuroscience 38:245–253CrossRefGoogle Scholar
  42. 42.
    Kastner A, Hirsch EC, Agid Y et al (1993) Tyrosine hydroxylase protein and messenger RNA in the dopaminergic nigral neurons of patients with Parkinson’s disease. Brain Res 606:341–345PubMedCrossRefGoogle Scholar
  43. 43.
    Anglade P, Vyas S, Hirsch EC et al (1997) Apoptosis in dopaminergic neurons of the human substantia nigra during normal aging. Histol Histopathol 12:603–610PubMedGoogle Scholar
  44. 44.
    Tompkins MM, Basgall EJ, Zamrini E et al (1997) Apoptotic-like changes in Lewy-body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150:119–131PubMedGoogle Scholar
  45. 45.
    Watanabe H (1987) Differential decrease in the rate of dopamine synthesis in several dopaminergic neurons of aged rat brain. Exp Gerontol 22:17–25PubMedCrossRefGoogle Scholar
  46. 46.
    Kish SJ, Shannak K, Rajput A et al (1992) Aging produces a specific pattern of striatal dopamine loss: implications for the etiology of idiopathic Parkinson’s disease. J Neurochem 58:642–648PubMedCrossRefGoogle Scholar
  47. 47.
    Thannickal TC, Lai YY, Siegel JM (2008) Hypocretin (orexin) and melanin concentrating hormone loss and the symptoms of Parkinson’s disease. Brain 131:e87 (Online). doi:10.1093/brain/awm221
  48. 48.
    Haycock JW, Becker L, Ang L et al (2003) Marked disparity between age-related changes in dopamine and other presynaptic dopaminergic markers in human striatum. J Neurochem 87:574–585PubMedCrossRefGoogle Scholar
  49. 49.
    Gerhardt GA, Cass WA, Yi A et al (2002) Changes in somatodendritic but not terminal dopamine regulation in aged rhesus monkeys. J Neurochem 80:168–177PubMedCrossRefGoogle Scholar
  50. 50.
    Bannon MJ, Poosch MS, Xia Y et al (1992) Dopamine transporter mRNA content in human substantia nigra decreases precipitously with age. PNAS 89:7095–7099PubMedCrossRefGoogle Scholar
  51. 51.
    Kish SJ, Zhong XH, Hornykiewicz O et al (1995) Striatal 3,4-dihydroxyphenylalanine decarboxylase in aging: disparity between postmortem and positron emission tomography studies? Ann Neurol 38:260–264PubMedCrossRefGoogle Scholar
  52. 52.
    Bohnen NI, Albin RL, Koeppe RA et al (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cerebral Blood Flow Metab 26:1198–1212Google Scholar
  53. 53.
    Bannon MJ, Whitty CJ (1997) Age-related and regional differences in dopamine transporter mRNA expression in human midbrain. Neurology 48:969–977PubMedGoogle Scholar
  54. 54.
    Volkow ND, Gur RC, Wang GJ et al (1998) Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. Am J Psychiatry 155:344–349PubMedGoogle Scholar
  55. 55.
    van Dyck CH, Seibyl JP, Malison RT et al (1995) Age-related decline in striatal dopamine transporter binding with iodine-123-ß-CITSPECT. J Nuclear Med 36:1175–1181Google Scholar
  56. 56.
    van Dyck CH, Seibyl JP, Malison RT (2002) Age related decline in dopamine transporters: Analysis of striatal subregions, nonlinear effects, and hemispheric asymmetries. Am J Geriatr Psychiatry 10:36–43Google Scholar
  57. 57.
    Erixon-Lindroth N, Farde L, Wahlin TBR et al (2005) The role of the striatal dopamine transporter in cognitive aging. Psychiatry Res Neuroimag 138:1–12CrossRefGoogle Scholar
  58. 58.
    Castner SA, Goldman-Rakic PS (2004) Enhancement of working memory in aged monkeys by a sensitizing regimen of dopamine D1 receptor stimulation. J Neurosci 24:1446–1450PubMedCrossRefGoogle Scholar
  59. 59.
    Volkow ND, Logan J, Fowler JS et al (2000) Association between age-related decline in brain dopamine activity and impairment in frontal and cingulate metabolism. Am J Psychiatry 157:75–80PubMedCrossRefGoogle Scholar
  60. 60.
    Rollo CD (2007) Speculations on the evolutionary ecology of Homo sapiens with special reference to body size, allometry and survivorship. In: Samaras T (ed) Human body size and the laws of scaling. Nova Biomedical Publishers, New York, pp 261–299Google Scholar
  61. 61.
    Vallender EJ, Lahn BT (2004) Positive selection on the human genome. Hum Mol Genet 13:R245–R254PubMedCrossRefGoogle Scholar
  62. 62.
    Preuss TM, Caceres M, Oldham MC et al (2004) Human brain evolution: insights from microarrays. Nat Rev Genet 5:850–860PubMedCrossRefGoogle Scholar
  63. 63.
    Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411CrossRefGoogle Scholar
  64. 64.
    Rollo CD (2002) Growth negatively impacts the life span of mammals. Evol Dev 4:55–61CrossRefGoogle Scholar
  65. 65.
    Rollo CD (2007) Overview of research on giant transgenic mice with emphasis on the brain and aging. In: Samaras T (ed) Human body size and the laws of scaling. Nova Biomedical Publishers, New York, pp 235–260Google Scholar
  66. 66.
    Vermeulen CJ, Loeschcke V (2007) Longevity and the stress response in Drosophila. Exp Gerontol 42:153–159PubMedCrossRefGoogle Scholar
  67. 67.
    Allain H, Bentue-Ferrer D, Akwa Y (2008) Disease-modifying drugs and Parkinson’s disease. Prog Neurobiol 84:25–39PubMedCrossRefGoogle Scholar
  68. 68.
    Cotzias GC, Miller ST, Nicholson AR (1974) Prolongation of the life-span in mice adapted to large doses of L-DOPA. PNAS 71:2466–2469PubMedCrossRefGoogle Scholar
  69. 69.
    Cotzias GC, Miller ST, Tang LC et al (1977) Levodopa, fertility, and longevity. Science 196:549–551PubMedCrossRefGoogle Scholar
  70. 70.
    Chihara K, Kashio Y, Kita T et al (1986) L-DOPA stimulates release of hypothalamic growth hormone-releasing hormone in humans. J Clin Endocrinol Metab 62:466–473PubMedCrossRefGoogle Scholar
  71. 71.
    De la Cruz CP, Revilla E, Rodríguez-Gomez JA et al (1997) (−)-Deprenyl treatment restores serum insulin-like growth factor-I (IGF-I) levels in aged rats to young rat level. Eur J Pharmacol 327:215–220PubMedCrossRefGoogle Scholar
  72. 72.
    Herenu CB, Cristina C, Rimoldi OJ et al (2007) Restorative effect of insulin-like growth factor-I gene therapy in the hypothalamus of senile rats with dopaminergic dysfunction. Gene Therapy 14:237–245PubMedCrossRefGoogle Scholar
  73. 73.
    Diaz-Torga G, Feierstein C, Libertun C et al (2002) Disruption of the D2 dopamine receptor alters GH and IGF-I secretion and causes dwarfism in male mice. Endocrinoloy 143:1270–1279CrossRefGoogle Scholar
  74. 74.
    De Luca M, Rose G, Bonafe M et al (2001) Sex-specific longevity associations defined by tyrosine hydroxylase–insulin–insulin growth factor 2 haplotypes on the 11p15.5 chromosomal region. Exp Gerontol 36:1663–1671PubMedCrossRefGoogle Scholar
  75. 75.
    Kitani K, Kanai S, Carrillo MC et al (1994) (−)Deprenyl increases the life span as well as activities of superoxide dismutase and catalase but not of glutathione peroxidase in selective brain regions in Fischer rats. Ann NY Acad Sci 717:60–71PubMedCrossRefGoogle Scholar
  76. 76.
    Carter CS, Sonntag WE, Onder G et al (2002) Physical performance and longevity in aged rats. J Gerontol Ser A: Biol Sci Med Sci 57:B193–B197Google Scholar
  77. 77.
    Joseph JA, Bartus RT, Clody D et al (1983) Psychomotor performance in the senescent rodent: reduction of deficits via striatal dopamine receptor up-regulation. Neurobiol Aging 4:313–319PubMedCrossRefGoogle Scholar
  78. 78.
    Vermeulen CJ, Cremers T, Westerink BHC et al (2006) Changes in dopamine levels and locomotor activity in response to selection on virgin lifespan in Drosophila melanogaster. Mech Ageing Dev 127:610–617CrossRefGoogle Scholar
  79. 79.
    De Luca M, Roshina NV, Geiger-Thornsberry GL et al (2003) Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nat Genet 34:429–433PubMedCrossRefGoogle Scholar
  80. 80.
    Hendricks JC, Lu S, Kume K (2003) Gender dimorphism in the role of cycle (BMAL1) in rest, rest regulation, and longevity in Drosophila melanogaster. J Biol Rhythms 18:12–25PubMedCrossRefGoogle Scholar
  81. 81.
    Bradley AJ, McDonald IR, Lee AK (1980) Stress and mortality in a small marsupial (Antechinus stuartii, Macleary). Gen Comp Endocrinol 40:188–200PubMedCrossRefGoogle Scholar
  82. 82.
    Naylor E, Bergmann BM, Krauski K et al (2000) The circadian Clock mutation alters sleep Homeostasis in the Mouse. J Neurosci 20:8138–8143PubMedGoogle Scholar
  83. 83.
    Meites J (1995) Neuroendocrine control of reproduction in aging rats and humans. In: Sarkar DK, Barnes CD (eds) The reproductive endocrinology of aging and drug abuse. CRC Press, Boca Raton, pp 109–168Google Scholar
  84. 84.
    Forman LJ, Sonntag WE, Miki N et al (1980) Maintenance by L-DOPA treatment of estrous cycles and LH response to estrogen in aging female rats. Exp Aging Res 6:547–554PubMedCrossRefGoogle Scholar
  85. 85.
    Yin W, Gore AC (2006) Neuroendocrine control of reproductive aging: roles of GnRH neurons. Reproduction 131:403–414PubMedCrossRefGoogle Scholar
  86. 86.
    Simpkins JW, Mueller GP, Huang HH et al (1977) Evidence for depressed catecholamine and enhanced serotonin metabolism in aging male rats: possible relation to gondotropin secretion. Endocrinol 100:1672–1678CrossRefGoogle Scholar
  87. 87.
    Prasad SK, Qureshi TN, Saxena S et al (2007) L-Dopa feeding induces body growth and reproductive conditions in Japanese quail, Coturnix coturnix Japonica. Int J Poultry Sci 6:560–566CrossRefGoogle Scholar
  88. 88.
    Tsai HW, Shui HA, Liu HS et al (2006) Monoamine levels in the nucleus accumbens correlate with male sexual behavior in middle-aged rats. Pharmacol Biochem Behav 83:265–270PubMedCrossRefGoogle Scholar
  89. 89.
    Hussain T, Lokhandwala MF (1998) Renal dopamine receptor function in hypertension. Hypertension 32:187–197PubMedGoogle Scholar
  90. 90.
    Zeng C, Yang Z, Wang Z et al (2005) Interaction of angiotensin II type 1 and D5 dopamine receptors in renal proximal tubule cells. Hypertension 45:804–810PubMedCrossRefGoogle Scholar
  91. 91.
    Banday AA, Lokhandwala MF (2007) Oxidative stress reduces renal dopamine D1 receptor-Gq/11α G protein-phospholipase C signaling involving G protein-coupled receptor kinase 2. Am J Physiol Renal Physiol 293:F306–F315PubMedCrossRefGoogle Scholar
  92. 92.
    Steiner B, Winter C, Hosman K et al (2006) Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 199:291–300PubMedCrossRefGoogle Scholar
  93. 93.
    Lemon JA, Boreham DR, Rollo CD (2003) A dietary supplement abolishes age-related cognitive decline in transgenic mice expressing elevated free radical processes. Exp Biol Med 228:800–810Google Scholar
  94. 94.
    O’Rourke B, Cortassa S, Aon MA (2005) Mitochondrial ion channels: gatekeeprs of life and death. Physiology 20:303–315PubMedCrossRefGoogle Scholar
  95. 95.
    Gibson GE, Peterson C (1987) Calcium and the aging nervous system. Neurobiol Aging 8:329–343PubMedCrossRefGoogle Scholar
  96. 96.
    Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350PubMedCrossRefGoogle Scholar
  97. 97.
    Thibault O, Gant JC, Landfield PW (2007) Expansion of the calcium hypothesis of brain aging and Alzheimer’s disease: minding the store. Aging Cell 6:307–317PubMedCrossRefGoogle Scholar
  98. 98.
    Squier TC (2001) Oxidative stress and protein aggregation during biological aging. Exp Gerontol 36:539–1550CrossRefGoogle Scholar
  99. 99.
    Beal MF (1998) Excitotoxicity and nitric oxide in Parkinson’s disease pathogenesis. Ann Neurol 44(Suppl 1):S110–S114PubMedGoogle Scholar
  100. 100.
    Tang TS, Slow E, Lupu V et al (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington’s disease. PNAS 102:2602–2607PubMedCrossRefGoogle Scholar
  101. 101.
    Yan Y, Wei CL, Zhang WR et al (2006) Cross-talk between calcium and reactive oxygen species signaling. Acta Pharmacol Sinica 27:821–826CrossRefGoogle Scholar
  102. 102.
    Kourie JI (1998) Interaction of reactive oxygen species with ion transport mechanisms. Am J Physiol Cell Physiol 275:C1–C24Google Scholar
  103. 103.
    Rollo CD (2007) Multidisciplinary aspects of regulatory systems relevant to multiple stressors: aging, xenobiotics and radiation. In: Mothersill C, Mosse I, Seymour C (eds) Multiple stressors: a challenge for the future. Springer, Dordrecht, pp 185–224CrossRefGoogle Scholar
  104. 104.
    Koliwad SK, Elliott SJ, Kunze DL (1996) Oxidized glutathione mediates cation channel activation in calf vascular endothelial cells during oxidant stress. J Physiol 495:37–49PubMedGoogle Scholar
  105. 105.
    Wang JW, Humphreys JM, Phillips JP et al (2000) A novel leg-shaking Drosophila mutant defective in a voltage-gated K+ current and hypersensitive to reactive oxygen species. J Neurosci 20:65958–65964Google Scholar
  106. 106.
    Matalon S, Hardiman KM, Jain L et al (2003) Regulation of ion channel structure and function by reactive oxygen–nitrogen species. Am J Physiol Lung Cell Mol Physiol 285:L1184–L1189PubMedGoogle Scholar
  107. 107.
    Avshalumov MV, Chen BT, Marshall SP et al (2003) Glutamate-dependent inhibition of dopamine release in striatum is mediated by a new diffusible messenger, H2O2. J Neurosci 23:2744–2750PubMedGoogle Scholar
  108. 108.
    Pletjushkina OY, Fetisova EK, Lyamzaev KG et al (2005) Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion. Cell Death Differ 12:1442–1444CrossRefGoogle Scholar
  109. 109.
    Ichinari K, Kakei M, Matsuoka T et al (1996) Direct activation of the ATP-sensitive potassium channel by oxygen free radicals in guinea-pig ventricular cells: its potentiation by MgADP. J Mol Cell Cardiol 28:1867–1877PubMedCrossRefGoogle Scholar
  110. 110.
    Beckman KB, Ames BN (1998) The free radical theory of aging matures. Physiol Rev 78:547–581PubMedGoogle Scholar
  111. 111.
    Liu J (2008) The effects and mechanisms of mitochondrial nutrient α-lipoic acid on improving age-associated mitochondrial and cognitive dysfunction: an overview. Neurochem Res 33:194–203PubMedCrossRefGoogle Scholar
  112. 112.
    Lutz PL, Prentice HM, Milton SL (2003) Is turtle longevity linked to enhanced mechanisms for surviving brain anoxia and reoxygenation? Exp Gerontol 38:797–800PubMedCrossRefGoogle Scholar
  113. 113.
    McCartney CE, McClafferty H, Huibant JM et al (2005) A cysteine-rich motif confers hypoxia sensitivity to mammalian large conductance voltage- and Ca-activated K (BK) channel α -subunits. PNAS 102:17870–17876PubMedCrossRefGoogle Scholar
  114. 114.
    Brown MF, Gratton TP, Stuart JA (2007) Metabolic rate does not scale with body mass in cultured mammalian cells. Am J Physiol Regul Integr Comp Physiol 292:R2115–R2121PubMedGoogle Scholar
  115. 115.
    Disterhoft JF, Oh MM (2007) Alterations in intrinsic neuronal excitability during normal aging. Aging Cell 6:327–336PubMedCrossRefGoogle Scholar
  116. 116.
    Thibault O, Landfield PW (1996) Increase in single L-type calcium channels in hippocampal neurons during aging. Science 272:1017–1020PubMedCrossRefGoogle Scholar
  117. 117.
    Yamada T, McGeer PL, Baimbridge KG et al (1990) Relative sparing in Parkinson’s disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res 526:303–307PubMedCrossRefGoogle Scholar
  118. 118.
    Kamsler A, Segal M (2003) Hydrogen peroxide modulation of synaptic plasticity. J Neurosci 23:269–276PubMedGoogle Scholar
  119. 119.
    Davare MA, Hell JW (2003) Increased phosphorylation of the neuronal L-type Ca2+ channel Cav1.2 during aging. PNAS 100:16018–16023PubMedCrossRefGoogle Scholar
  120. 120.
    Batuecas A, Pereira R, Centeno C et al (1998) Effects of chronic nimodipine on working memory of old rats in relation to defects in synaptosomal calcium homeostasis. Eur J Pharmacol 350:141–150PubMedCrossRefGoogle Scholar
  121. 121.
    Norris CM, Halpain S, Foster TC (1998) Reversal of age-related alterations in synaptic plasticity by blockade of L-Type Ca2+ channels. J Neurosci 18:3171–3179PubMedGoogle Scholar
  122. 122.
    Tzounopoulos T, Stackman R (2003) Enhancing synaptic plasticity and memory: a role for small-conductance Ca2+-activated K+ channles. Neuroscientist 9:434–439PubMedCrossRefGoogle Scholar
  123. 123.
    Gant JC, Sama MM, Landfield PW et al (2006) Early and simultaneous emergence of multiple hippocampal biomarkers of aging is mediated by Ca2+-induced Ca2+ release. J Neurosci 26:3482–3490PubMedCrossRefGoogle Scholar
  124. 124.
    Murphy GG, Fedorov NB, Giese KP et al (2004) Increased neuronal excitability, synaptic plasticity, and learning in aged Kvβ1.1 knockout mice. Curr Biol 14:1907–1915PubMedCrossRefGoogle Scholar
  125. 125.
    Horiuchi J, Saitoe M (2005) Can flies shed light on our own age-related memory impairment? Ageing Res Rev 4:83–101PubMedCrossRefGoogle Scholar
  126. 126.
    Blalock EM, Chen KC, Sharrow K et al (2003) Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 23:3807–3819PubMedGoogle Scholar
  127. 127.
    Deyo RA, Straube KT, Disterhoft JF (1989) Nimodipine facilitates associative learning in aging rabbits. Science 243:809–811PubMedCrossRefGoogle Scholar
  128. 128.
    Markel E, Felszeghy K, Luiten PGM et al (1995) Beneficial effect of chronic nimodipine treatment on behavioral dysfunctions of aged rats exposed to perinatal ethanol treatment. Arch Gerontol Geriatr 21:75–88PubMedCrossRefGoogle Scholar
  129. 129.
    Chapman PF (2005) Cognitive aging: recapturing the excitation of youth? Curr Biol 15:R31–R33PubMedCrossRefGoogle Scholar
  130. 130.
    De Jong GI, Nyakas C, Scuurman T et al (1993) Aging-related alterations in behavioral activation and cerebrovascular integrity in rats are dose-dependently influenced by nimodipine. Neurosci Res Comm 12:1–8Google Scholar
  131. 131.
    Belforte JE, Magarinos-Azcone C, Armando I et al (2001) Pharmacological involvement of the calcium blocker flunarizine in dopamine transmission at the striatum. Parkinsonism Related Disord 8:33–40CrossRefGoogle Scholar
  132. 132.
    Verkhratsky A (2005) Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons. Physiol Rev 85:201–279PubMedCrossRefGoogle Scholar
  133. 133.
    Huddleston AT, Tang W, Takeshima H et al (2008) Superoxide-induced potentiation in the hippocampus requires activation of ryanodine receptor type 3 and ERK. J Neurophysiol 99:1565–1571PubMedCrossRefGoogle Scholar
  134. 134.
    Hidalgo C, Carrasco MA, Munoz P et al (2007) A role for reactive oxygen/nitrogen species and iron on neuronal synaptic plasticity. Antioxid Redox Signal 9:245–255PubMedCrossRefGoogle Scholar
  135. 135.
    Hammond RS, Bond CT, Strassmaier T et al (2006) Small-conductance Ca2+-activated K+ channel type 2 (SK2) modulates hippocampal learning, memory. and synaptic plasticity J Neurosci 26:1844–1853Google Scholar
  136. 136.
    Blank T, Nijholt I, Kye MJ et al (2003) Small-conductance, Ca2+-activated K+ channel SK3 generates age-related memory and LTP deficits. Nat Neurosci 6:911–912PubMedCrossRefGoogle Scholar
  137. 137.
    Stackman RW, Hammond RS, Linardatos E et al (2002) Small conductance Ca2+-activated K+ channels modulate synaptic plasticity and memory encoding. J Neurosci 22:10163–10171PubMedGoogle Scholar
  138. 138.
    Brennan AR, Dolinsky B, Vu MAT et al (2008) Blockade of IP3-mediated SK channel signaling in the rat medial prefrontal cortex improves spatial working memory. Learn Mem 15:93–96CrossRefGoogle Scholar
  139. 139.
    Oh SW, Mukhopadhyay A, Dixit BL et al (2006) Identification of direct DAF-16 targets controlling longevity, metabolism and diapause by chromatin immunoprecipitation. Nat Genet 38:251–257PubMedCrossRefGoogle Scholar
  140. 140.
    Lim D, Fedrizzi L, Tartari M et al (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 283:5780–5789PubMedCrossRefGoogle Scholar
  141. 141.
    Ghelardini C, Quattrone A, Galeotti N et al (2003) Antisense knockdown of the Shaker-like Kv1.1 gene abolishes the central stimulatory effects of amphetamines in mice and rats. Neuropsychopharmacology 28:1096–1105Google Scholar
  142. 142.
    Raimondi L, Alfarano C, Pacini A et al (2007) Methylamine-dependent release of nitric oxide and dopamine in the CNS modulates food intake in fasting rats. Brit J Pharmacol 150:1003–1010CrossRefGoogle Scholar
  143. 143.
    Lawson K (2000) Is there a role for potassium channel openers in neuronal ion channel disorders? Expert Opin Invest Drugs 9:2269–2280CrossRefGoogle Scholar
  144. 144.
    Vincent A, Buckley C, Schott JM et al (2004) Potassium channel antibody-associated encephalopathy: a potentially immunotherapy-responsive form of limbic encephalitis. Brain 127:701–712PubMedCrossRefGoogle Scholar
  145. 145.
    Michel PP, Alvarez-Fischer D, Guerreiro S et al (2007) Role of activity-dependent mechanisms in the control of dopaminergic neuron survival. J Neurochem 101:289–297PubMedCrossRefGoogle Scholar
  146. 146.
    Liss B, Haeckel O, Wildmann J et al (2005) K-ATP channels promote the differential degeneration of dopaminergic midbrain neurons. Nat Neurosci 8:1742–1751PubMedCrossRefGoogle Scholar
  147. 147.
    Liss B, Roeper J (2001) Molecular physiology of neuronal K-ATP channels (review). Mol Membr Biol 18:117–127PubMedCrossRefGoogle Scholar
  148. 148.
    Avshalumov MV, Chen BT, Koos T et al (2005) Endogeneous hydrogen peroxide regulates the excitability of midbrain dopamine neurons via ATP-sensitive potassium channels. J Neurosci 25:4222–4231PubMedCrossRefGoogle Scholar
  149. 149.
    Chen BT, Avshalumov MV, Rice ME (2001) H2O2 is a novel endogenous modulator of synaptic dopamine release. J Neurophysiol 85:2468–2476PubMedGoogle Scholar
  150. 150.
    Chen BT, Avshalumov MV, Rice ME (2002) Modulation of somatodendritic dopamine release by endogenous H2O2: susceptibility in substantia nigra but resistance in VTA. J Neurophysiol 87:1155–1158PubMedGoogle Scholar
  151. 151.
    Bao L, Avshalumov MV, Rice ME (2005) Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion. J Neurosci 25:10029–10040PubMedCrossRefGoogle Scholar
  152. 152.
    Rollo CD (2006) Radiation and the regulatory landscape of neo2-Darwinism. Mut Res 597:18–31Google Scholar
  153. 153.
    Lamensdorf I, Meiri N, Harvey-White J et al (1999) Kir6.2 oligoantisense administered into the globus pallidus reduces apomorphine-induced turning in 6-OHDA hemiparkinsonian rats. Brain Res 818:275–284PubMedCrossRefGoogle Scholar
  154. 154.
    Chan CS, Guzman JN, IIijic E et al (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086PubMedCrossRefGoogle Scholar
  155. 155.
    Kuzhikandathil EV, Yu W, Oxford GS (1998) Human dopamine D3 and D2L receptors couple to inward rectifier potassium channels in mammalian cell lines. Mol Cellul Neurosci 12:390–402CrossRefGoogle Scholar
  156. 156.
    Momiyama T, Koga E (2001) Dopamine D2-like receptors selectively block N-type Ca2+ channels to reduce GABA release onto rat striatal cholinergic interneurons. J Physiol 533:479–492PubMedCrossRefGoogle Scholar
  157. 157.
    Huang CL, Huang NK, Shyue SK et al (2003) Hydrogen peroxide induces loss of dopamine transporter activity: a calcium-dependent oxidative mechanism. J Neurochem 86:1247–1259PubMedGoogle Scholar
  158. 158.
    Sonders MS, Zhu SJ, Zahniser NR et al (1997) Multiple ionic conductances of the human dopamine transporter: the actions of dopamine and psychostimulants. J Neurosci 17:960–974PubMedGoogle Scholar
  159. 159.
    Berman SB, Zigmond MJ, Hastings TG (1996) Modification of dopamine transporter function: effect of reactive oxygen species and dopamine. J Neurochem 67:593–600PubMedGoogle Scholar
  160. 160.
    Morel P, Tallineau C, Pontcharraud R et al (1999) Effects of 4-hydroxynonenal, a lipid peroxidation product, on dopamine transport and Na+/K+ ATPase in rat striatal synaptosomes. Neurochem Intern 33:531–540CrossRefGoogle Scholar
  161. 161.
    Salthun-Lassalle B, Hirsch EC, Wolfart J et al (2004) Rescue of mesencephalic dopaminergic neurons in culture by low-level stimulation of voltage-gated sodium channels. J Neurosci 24:5922–5930PubMedCrossRefGoogle Scholar
  162. 162.
    Whitehead RE, Ferrer JV, Javitch JA et al (2001) Reaction of oxidized dopamine with endogenous cysteine residues in the human dopamine transporter. J Neurochem 76:1242–1251PubMedCrossRefGoogle Scholar
  163. 163.
    Redman PT, Jefferson BS, Ziegler CB et al (2006) A vital role for voltage-dependent potassium channels in dopamine transporter-mediated 6-hydroxydopamine neurotoxicity. Neuroscience 143:1–6CrossRefGoogle Scholar
  164. 164.
    Remillard CV, Yuan JXY (2004) Activation of K+ channels: an essential pathway in programmed cell death. Am J Physiol Lung Cell Mol Physiol 286:L49–L67PubMedCrossRefGoogle Scholar
  165. 165.
    Zhao YM, Sun LN, Zhou HY et al (2006) Voltage-dependent potassium channels are involved in glutamate-induced apoptosis of rat hippocampal neurons. Neurosci Lett 398:22–27CrossRefGoogle Scholar
  166. 166.
    Bindoli A, Rigobello MP, Deeble DJ (1992) Biochemical and toxicological properties of the oxidation products of catecholamines. Free Radical Biol Med 13:391–405CrossRefGoogle Scholar
  167. 167.
    Niznik HB, Fogel EF, Fassos FF et al (1991) The dopamine transporter is absent in Parkinsonian putamen and reduced in the caudate nucleus. J Neurochem 56:192–198PubMedCrossRefGoogle Scholar
  168. 168.
    Call LM, Morton CM (2002) Continuing to break the sound barrier: genes in hearing. Cur Opin Genet Dev 12:343–348CrossRefGoogle Scholar
  169. 169.
    Lee JW, Ryoo ZY, Lee EJ et al (2002) Circling mouse, a spontaneous mutant in the inner ear. Exp Anim 51:167–171PubMedCrossRefGoogle Scholar
  170. 170.
    Wood JD, Muchinsky SJ, Filoteo AG et al (2004) Low endolymph calcium concentrations in deafwaddler2 J mice suggest that PMCA2 contributes to endolymph calcium maintenance. J Assoc Res Otolaryngol 5:99–110PubMedGoogle Scholar
  171. 171.
    Cirelli C (2005) A molecular window on sleep: changes in gene expression between sleep and wakefulness. Neuroscientist 11:63–74PubMedCrossRefGoogle Scholar
  172. 172.
    Kume K, Kume S, Park SK et al (2005) Dopamine is a regulator of arousal in the fruit fly. J Neurosci 25:7377–7384PubMedCrossRefGoogle Scholar
  173. 173.
    Espinosa F, Marks G, Heintz N et al (2004) Increased motor drive and sleep loss in mice lacking Kv3-type potassium channels. Genes Brain Behav 3:90–100PubMedCrossRefGoogle Scholar
  174. 174.
    Patil N, Cox DR, Bhat D et al (1995) A potassium channel mutation in weaver mice implicates membrane excitability in granuale cell differentiation. Nat Genet 11:126–129PubMedCrossRefGoogle Scholar
  175. 175.
    Qiao X, Hefti F, Knusel B et al (1996) Selective failure of brain-derived neurotrophic factor mRNA expression in the cerebellum of Stargazer, a mutant mouse with ataxia. J Neurosci 16:640–648PubMedGoogle Scholar
  176. 176.
    Gutterman DD (2005) Mitochondria and reactive oxygen species: an evolution in function. Circul Res 97:302–304CrossRefGoogle Scholar
  177. 177.
    Meng TC, Lou YW, Chen YY et al (2006) Cys-oxidation of protein tyrosine phosphatases: its role in regulation of signal transduction and its involvement in human cancers. J Cancer Mol 2:9–16Google Scholar
  178. 178.
    Tang XD, Daggett H, Hanner M et al (2001) Oxidative regulation of large conductance calcium-activated potassium channels. J Gen Physiol 117:253–274PubMedCrossRefGoogle Scholar
  179. 179.
    Wei L, Yu SP, Gottron F et al (2003) Potassium channel blockers attenuate hypoxia- and ischemia-induced neuronal death in vitro and in vivo. Stroke 34:1281–1286PubMedCrossRefGoogle Scholar
  180. 180.
    Katsuki H, Shibata H, Takenaka C et al (2003) N-methyl-d-aspartate receptors contribute to the maintenance of dopaminergic neurons in rat midbrain slice cultures. Neurosci Lett 341:123–126PubMedCrossRefGoogle Scholar
  181. 181.
    Salthun-Lassalle B, Traver S, Hirsch EC et al (2005) Substance P, neurokinins A and B, and synthetic tachykinin peptides protect mesencephalioc dopaminergic neurons in culture via an activity-dependent mechanism. Mol Pharmacol 68:1214–1224PubMedCrossRefGoogle Scholar
  182. 182.
    Yang F, Feng L, Zheng F et al (2001) GDNF acutely modulates excitability and A-type K+ channels in midbrain dopaminergic neurons. Nat Neurosci 4:1071–1078PubMedCrossRefGoogle Scholar
  183. 183.
    Douhou A, Troadec JD, Ruberg M et al (2001) Survival promotion of mesencephalic dopaminergic neurons by depolarizing concentrations of K+ requires concurrent inactivation of NMDA or AMPA/kainate receptors. J Neurochem 78:163–174PubMedCrossRefGoogle Scholar
  184. 184.
    Rossi D, Oshima T, Attwell D (2000) Glutamate release in severe brain ischaemia is mainly by reversed uptake. Nature 403:316–321PubMedCrossRefGoogle Scholar
  185. 185.
    Shahar T, House SB, Gainer H (2004) Neural activity protects hypothalamic magnocellular neurons against axotomy-induced programmed cell death. J Neurosci 24:6553–6562PubMedCrossRefGoogle Scholar
  186. 186.
    Grishin A, Ford H, Wang J et al (2005) Attenuation of apoptosis in enterocytes by blockade of potassium channels. Am J Physiol Gastrointest Liver Physiol 289:G815–G821PubMedCrossRefGoogle Scholar
  187. 187.
    Andrews ZB, Horvath B, Barnstable CJ et al (2005) Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson’s disease. J Neurosci 25:184–191PubMedCrossRefGoogle Scholar
  188. 188.
    Yu SP, Yeh CH, Strasser U et al (1999) NMDA Receptor-mediated K+ efflux and neuronal apoptosis. Science 284:336–339PubMedCrossRefGoogle Scholar
  189. 189.
    Adachi A, Nogi T, Ebihara S (1998) Phase-relationship and mutual effects between circadian rhythms of ocular melatoni and dopamine in the pigeon. Brain Res 792:361–369PubMedCrossRefGoogle Scholar
  190. 190.
    McLaughlin BA, Pal S, Tran MP et al (2001) p38 activation is required upstream of potassium current enhancement and caspase cleavage in thiol oxidant-induced neuronal apoptosis. J Neurosci 21:3303–3311PubMedGoogle Scholar
  191. 191.
    Redman PT, He K, Hartnett KA et al (2007) Apoptotic surge of potassium currents is mediated by p38 phosphorylation of Kv2.1. PNAS 104:3568–3573PubMedCrossRefGoogle Scholar
  192. 192.
    Pal S, Hartnett KA, Nerbonne JM et al (2003) Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci 23:4798–4802PubMedGoogle Scholar
  193. 193.
    Bossy-Wetzel E, Talantova MV, Lee W et al (2004) Crosstalk between nitric oxide and zinc pathways to neuronal cell death involving mitochondrial dysfunction and p38-activated K+ channels. Neuron 41:351–365PubMedCrossRefGoogle Scholar
  194. 194.
    Aizenman E, Stout AK, Hartnett KA et al (2000) Induction of neuronal apoptosis by thiol oxidation: putative role of intracellular zinc release. J Neurochem 75:1878–1888PubMedCrossRefGoogle Scholar
  195. 195.
    Martin-Romero FJ, Santiago-Josefat B, Correa-Bordes J et al (2000) Potassium-induced apoptosis in rat cerebellar granule cells involves cell-cycle blockade at the G1/S transition. J Mol Neurosci 15:155–165PubMedCrossRefGoogle Scholar
  196. 196.
    Verdaguer E, Jorda EG, Canudas AM et al (2003) 3-Amino thioacridone, a selective cyclin-dependent kinase 4 inhibitor, attenuates kainic acid-induced apoptosis in neurons. Neuroscience 120:599–603CrossRefGoogle Scholar
  197. 197.
    Otsuka Y, Tanaka T, Uchida D et al (2004) Roles of cyclin-dependent kinase 4 and p53 in neuronal cell death induced by doxorubicin on cerebellar granule neurons in mouse. Neurosci Lett 365:180–185CrossRefGoogle Scholar
  198. 198.
    Naetzker S, Hagen N, van Echten-Deckert G (2006) Activation of p38 mitogen-activated protein kinase and partial reactivation of the cell cycle by cis-4-methylsphingosine direct postmitotic neurons towards apoptosis. Genes Cells 11:269–279PubMedCrossRefGoogle Scholar
  199. 199.
    Yu SP, Yeh CH, Sensi SL et al (1997) Mediation of neuronal apoptosis by enhancement of outward potassium current. Science 278:114–117PubMedCrossRefGoogle Scholar
  200. 200.
    Platoshyn O, Zhang S, McDaniel SS et al (2002) Cytochrome c activates K+ channels before inducing apoptosis. Am J Physiol Cell Physiol 283:C1298–C1305PubMedGoogle Scholar
  201. 201.
    Ekhterae D, Platoshyn O, Krick S et al (2001) Bcl-2 decreases voltage-gated K+ channel activity and enhances survival in vascular smooth muscle cells. Am J Physiol Cell Physiol 281:C157–C165PubMedGoogle Scholar
  202. 202.
    Franklin JL, Sanz-Rodriguez C, Juhasz A et al (1995) Chronic depolarization prevents programmed death of sympathetic neurons in vitro but does not support growth: requirement for Ca2+ influx but not Trk activation. J Neurosci 15:643–664PubMedGoogle Scholar
  203. 203.
    Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267:4928–4944PubMedCrossRefGoogle Scholar
  204. 204.
    Bigelow DJ, Squier TC (2005) Redox modulation of cellular signaling and metabolism through reversible oxidation of methionine sensors in calcium regulatory proteins. Biochim Biophys Acta Prot Proteom 1703:121–134CrossRefGoogle Scholar
  205. 205.
    Stutzmann GE (2007) The pathogenesis of Alzheimers disease—is it a lifelong “Calciumopathy”? Neuroscientist 13:546–559PubMedCrossRefGoogle Scholar
  206. 206.
    Ceriani MF, Hogenesch JB, Yanovsky M et al (2002) Genome-wide expression analysis in Drosophila reveals genes controlling circadian behavior. J Neurosci 22:9305–9319PubMedGoogle Scholar
  207. 207.
    Harman D (1996) Aging and disease: extending functional life span. Ann NY Acad Sci 786:321–336PubMedCrossRefGoogle Scholar
  208. 208.
    Brand MD, Affourtit C, Esteves TC et al (2004) Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radical Biol Med 37:755–767CrossRefGoogle Scholar
  209. 209.
    Keller JN, Gee J, Ding Q (2002) The proteasome in brain aging. Aging Res Rev 1:279–293CrossRefGoogle Scholar
  210. 210.
    Keating DJ (2008) Mitochondrial dysfunction, oxidative stress, regulation of exocytosis and their relevance to neurodegenerative diseases. J Neurochem 104:298–305PubMedGoogle Scholar
  211. 211.
    Avshalumov MV, Rice ME (2002) NMDA receptor activation mediates hydrogen peroxide-induced pathophysiology in rat hippocampal slices. J Neurophysiol 87:2896–2903PubMedGoogle Scholar
  212. 212.
    Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of aging. Nature 408:239–247PubMedCrossRefGoogle Scholar
  213. 213.
    Liu H, Colavitti R, Rovira II et al (2005) Redox-dependent transcriptional regulation. Circ Res 97:967–974PubMedCrossRefGoogle Scholar
  214. 214.
    Droge W (2002) The plasma redox state and ageing. Ageing Res Rev 1:257–278PubMedCrossRefGoogle Scholar
  215. 215.
    Droge W (2005) Oxidative aging and insulin receptor signaling. J Gerontol Biol Sci Med Sci 60(A):1378–1385Google Scholar
  216. 216.
    Klann E, Roberson ED, Knapp LT et al (1998) A role for superoxide in protein kinase C activation and induction of long-term potentiation. J Biol Chem 273:4516–4522PubMedCrossRefGoogle Scholar
  217. 217.
    Hu D, Serrano F, Oury TD et al (2006) Aging-dependent alterations in synaptic plasticity and memory in mice that overexpress extracellular superoxide dismutase. J Neurosci 26:3933–3941PubMedCrossRefGoogle Scholar
  218. 218.
    Finkel T (2003) Oxidant signals and oxidative stress. Curr Opin Cell Biol 15:247–254PubMedCrossRefGoogle Scholar
  219. 219.
    Menon SG, Goswami PC (2007) A redox cycle within the cell cycle: ring in the old with the new. Oncogene 26:1101–1109PubMedCrossRefGoogle Scholar
  220. 220.
    Rutter J, Reick M, Wu LC et al (2001) Regulation of Clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science 293:510–514PubMedCrossRefGoogle Scholar
  221. 221.
    Droge W, Schipper HM (2007) Oxidative stress and aberrant signaling in aging and cognitive decline. Aging Cell 6:361–370PubMedCrossRefGoogle Scholar
  222. 222.
    Lloyd D, Murray DB (2007) Redox rhythmicity: clocks at the core of temporal coherence. Bioessays 29:465–473PubMedCrossRefGoogle Scholar
  223. 223.
    Duffield GE, Best JD, Meurers BH et al (2002) Circadian programs of transcriptional activation, signaling and protein turnover revealed by microarray analysis of mammalian cells. Curr Biol 12:551–557CrossRefGoogle Scholar
  224. 224.
    Serrano F, Klann E (2004) Reactive oxygen species and synaptic plasticity in the aging hippocampus. Ageing Res Rev 3:431–443PubMedCrossRefGoogle Scholar
  225. 225.
    Ghezzi P, Bonetto V, Fratelli M (2005) Thiol–disulfide balance: from the concept of oxidative stress to that of redox regulation. Antioxid Redox Signal 7:964–972PubMedCrossRefGoogle Scholar
  226. 226.
    Kishida KT, Klann E (2007) Sources and targets of reactive oxygen species in synaptic plasticity and memory. Antioxid Redox Signal 9:233–244PubMedCrossRefGoogle Scholar
  227. 227.
    Lachmansingh E, Rollo CD (1994) Evidence for a trade off between growth and behavioural activity in giant “Supermice” genetically engineered with extra growth hormone genes. Can J Zool 72:2158–2168CrossRefGoogle Scholar
  228. 228.
    Rollo CD, Foss J, Lachmansingh E et al (1997) Behavioral rhythmicity in transgenic growth hormone mice: trade-offs, energetics, and sleep-wake cycles. Can J Zool 75:1020–1034CrossRefGoogle Scholar
  229. 229.
    Hajdu I, Obal F Jr, Fang J et al (2002) Sleep of transgenic mice producing excess rat growth hormone. Am J Physiol Regul Integr Comp Physiol 282:R70–R76PubMedGoogle Scholar
  230. 230.
    Tu BP, Kudlicki A, Rowicka M et al (2005) Logic of the yeast metabolic cycle: temporal compartmentalization of cellular processes. Science 310:1152–1158PubMedCrossRefGoogle Scholar
  231. 231.
    Tu BP, Mohler RE, Liu JC et al (2007) Cyclic changes in metabolic state during the life of a yeast cell. PNAS 104:16886–16891PubMedCrossRefGoogle Scholar
  232. 232.
    Jin X, Shearman LP, Weaver DR et al (1999) A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell 96:57–68PubMedCrossRefGoogle Scholar
  233. 233.
    Buijs RM, van Eden CC, Goncharuk VD et al (2003) The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol 177:17–26PubMedCrossRefGoogle Scholar
  234. 234.
    Lowrey PL, Takahashi JS (2004) Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Ann Rev Gen Hum Genet 5:407–441CrossRefGoogle Scholar
  235. 235.
    Dioum EM, Rutter J, Tuckerman JR et al (2002) NPAS2: a gas-responsive transcription factor. Science 298:2385–2387PubMedCrossRefGoogle Scholar
  236. 236.
    Doi M, Hirayama J, Sassone-Corsi P (2006) Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508PubMedCrossRefGoogle Scholar
  237. 237.
    Claridge-Chang A, Wijinen H, Naef F et al (2001) Circadian regulation of gene expression systems in the Drosophila head. Neuron 32:657–671PubMedCrossRefGoogle Scholar
  238. 238.
    Pando MP, Pinchak AB, Cermakian N et al (2001) A cell-based system that recapitulates the dynamic light-dependent regulation of the vertebrate clock. PNAS 98:10178–10183PubMedCrossRefGoogle Scholar
  239. 239.
    Hirayama J, Cho S, Sassone-Corsi P (2007) Circadian control by the reduction/oxidation pathway: Catalase represses light-dependent clock gene expression in the zebrafish. PNAS 104:15747–15752PubMedCrossRefGoogle Scholar
  240. 240.
    La Fleur SE, Kalsbeek A, Wortel J et al (2001) A daily rhythm in glucose tolerance: a role for the suprachiasmatic nucleus. Diabetes 50:1237–1243PubMedCrossRefGoogle Scholar
  241. 241.
    Yin L, Wu N, Curtin JC et al (2007) Rev-erbα, a heme sensor that coordinates metabolic and circadian pathways. Science 318:1786–1789PubMedCrossRefGoogle Scholar
  242. 242.
    Ryter SW, Tyrrell RM (2000) The heme synthesis and degradation pathways: role in oxidant sensitivity. Heme oxygenase has both pro- and antioxidant properties. Free Radical Biol Med 28:289–309CrossRefGoogle Scholar
  243. 243.
    Etchegaray JP, Lee C, Wade PA et al (2003) Rhythmic histone acetylation underlies transcription in the mammalian circadian clock. Nature 421:177–182PubMedCrossRefGoogle Scholar
  244. 244.
    Woelfle MA, Johnson CH (2006) No promoter left behind: global circadian gene expression in cyanobacteria. J Biol Rhythms 21:419–431PubMedCrossRefGoogle Scholar
  245. 245.
    Shckorbatov YG, Zhuravlyova LA, Navrotskaya VV et al (2005) Chromatin structure and the state of human organism. Cell Biol Internat 29:77–81CrossRefGoogle Scholar
  246. 246.
    Kondratov RV (2007) A role of the circadian system and circadian proteins in aging. Ageing Res Rev 6:12–27PubMedCrossRefGoogle Scholar
  247. 247.
    Bordone L, Guarente L (2005) Calorie restriction, SIRT1 and metabolism: understanding longevity. Nat Rev Mol Cell Biol 6:298–305PubMedCrossRefGoogle Scholar
  248. 248.
    Kang HL, Benzer S, Min KT (2002) Life extension in Drosophila by feeding a drug. PNAS 99:838–843PubMedCrossRefGoogle Scholar
  249. 249.
    Noh KM, Koh JY (2000) Induction and activation by zinc of NADPH oxidase in cultured cortical neurons and astrocytes. J Neurosci 20:1–5Google Scholar
  250. 250.
    Tammariello SP, Quinn MT, Estus S (2000) NADPH oxidase contributes directly to oxidative stress and apoptosis in nerve growth factor-deprived sympathetic neurons. J Neurosci 20(RC53):1–5Google Scholar
  251. 251.
    Cai H (2005) NAD(P)H oxidase-dependent self-propagation of hydrogen peroxide and vascular disease. Circ Res 96:818–822PubMedCrossRefGoogle Scholar
  252. 252.
    Lopez-Real A, Rey P, Soto-Otero R et al (2005) Angiotensin-converting enzyme inhibition reduces oxidative stress and protects dopaminergic neurons in a 6-hydroxydopamine rat model of parkinsonism. J Neurosci Res 81:865–873PubMedCrossRefGoogle Scholar
  253. 253.
    Przedborski S, Ischiropoulos H (2005) Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal 7:685–693PubMedCrossRefGoogle Scholar
  254. 254.
    Rey P, Lopez-Real A, Sanchez-Iglesias S et al (2007) Angiotensin type-1-receptor antagonists reduce 6-hydroxydopamine toxicity for dopaminergic neurons. Neurobiol Aging 28:555–567PubMedCrossRefGoogle Scholar
  255. 255.
    Morre DM, Lenaz G, Morre DJ (2000) Surface oxidase and oxidative stress propagation in aging. J Exp Biol 203:1513–1521PubMedGoogle Scholar
  256. 256.
    Morre DJ, Morre DM (2003) Cell surface NADH oxidases (ECTO-NOX proteins) with roles in cancer, cellular time keeping, growth, aging and neurodegenerative diseases. Free Radical Res 37:795–808CrossRefGoogle Scholar
  257. 257.
    Orczyk J, Morre DM, Morre DJ (2005) Periodic fluctuations in oxygen consumption comparing HeLa (cancer) and CHO (non-cancer) cells and response to external NAD(P)+/NAD(P)H. Mol Cell Biochem 273:161–167PubMedCrossRefGoogle Scholar
  258. 258.
    Crane FL, Low H (2005) Plasma membrane redox and control of sirtuin. AGE 27:147–152CrossRefGoogle Scholar
  259. 259.
    Kirsch M, De Groot H (2001) NAD(P)H, a directly operating antioxidant? FASEB J 15:1569–1574PubMedCrossRefGoogle Scholar
  260. 260.
    Gery S, Komatsu N, Baldjyan L et al (2006) The circadian gene Per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell 22:375–382PubMedCrossRefGoogle Scholar
  261. 261.
    Burdon RH (1995) Superoxide and hydrogen peroxide in relation to mammalian cell proliferation. Free Radical Biol Med 18:775–794CrossRefGoogle Scholar
  262. 262.
    Ammendola R, Ruocchio MR, Chirico G et al (2002) Inhibition of NADH/NADPH oxidase affects signal transduction by growth factor receptors in normal fibroblasts. Arch Biochem Biophys 397:253–257PubMedCrossRefGoogle Scholar
  263. 263.
    Miller BH, McDearmon EL, Panda S et al (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. PNAS 104:3342–3347PubMedCrossRefGoogle Scholar
  264. 264.
    Froy O, Chapnik N, Miskin R (2006) Long-lived αMUPA transgenic mice exhibit pronounced circadian rhythms. Am J Physiol Endocrinol Metab 291:E1017–E1024PubMedCrossRefGoogle Scholar
  265. 265.
    Kaasik K, Lee CC (2004) Reciprocal regulation of haem biosynthesis and the circadian clock in mammals. Nature 430:467–471PubMedCrossRefGoogle Scholar
  266. 266.
    Venkatachalam P, de Toledo SM, Pandey BN et al (2008) Regulation of normal cell cycle progression by flavin-containing oxidases. Oncogene 27:20–31PubMedCrossRefGoogle Scholar
  267. 267.
    Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radical Biol Med 43:332–347CrossRefGoogle Scholar
  268. 268.
    Reddy AB, Karp NA, Maywood ES et al (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16:1107–1115PubMedCrossRefGoogle Scholar
  269. 269.
    Akhtar RA, Reddy AB, Maywood ES et al (2002) Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Current Biol 12:540–550CrossRefGoogle Scholar
  270. 270.
    Young MW (2004) An ultradian clock shapes genome expression in yeast. PNAS 101:1118–1119PubMedCrossRefGoogle Scholar
  271. 271.
    Schibler U, Naef F (2005) Cellular oscillators: rhythmic gene expression and metabolism. Curr Opin Cell Biol 17:223–229PubMedCrossRefGoogle Scholar
  272. 272.
    Sato TK, Panda S, Kay SA et al (2003) DNA arrays: applications and implications for circadian biology. J Biol Rhythms 18:96–105PubMedCrossRefGoogle Scholar
  273. 273.
    Hunt T, Sassone-Corsi P (2007) Riding tandem: Circadian clocks and the cell cycle. Cell 129:461–464PubMedCrossRefGoogle Scholar
  274. 274.
    Klevecz RR, Bolen J, Forrest G, Murray DB (2004) A genomewide oscillation in transcription gates DNA replication and cell cycle. PNAS 101:1200–1205PubMedCrossRefGoogle Scholar
  275. 275.
    Chen Z, Odstrcil EA, Tu BP et al (2007) Restriction of DNA replication to the reductive phase of the metabolic cycle protects genome integrity. Science 316:1916–1919PubMedCrossRefGoogle Scholar
  276. 276.
    De Monte S, d’ Ovidio F, Dano S et al (2007) Dynamical quorum sensing: Population density encoded in cellular dynamics. PNAS 104:18377–18381PubMedCrossRefGoogle Scholar
  277. 277.
    Desai VG, Moland CL, Branham WS et al (2004) Changes in expression level of genes as a function of time of day in the liver of rats. Mut Res 549:115–129Google Scholar
  278. 278.
    Brauer MJ, Huttenhower C, Airoldi EM et al (2008) Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast. Mol Biol Cell 19:352–367PubMedCrossRefGoogle Scholar
  279. 279.
    Murray DB, Roller S, Kuriyama H et al (2001) Clock control of ultradian respiratory oscillation found during yeast continuous culture. J Bacteriol 183:7253–7259PubMedCrossRefGoogle Scholar
  280. 280.
    Everson CA, Laatsch CD, Hogg N (2005) Antioxidant defense responses to sleep loss and sleep recovery. Am J Physiol Regul Integr Comp Physiol 288:R374–R383PubMedGoogle Scholar
  281. 281.
    Lloyd D, Eshantha L, Salgado J et al (2002) Respiratory oscillations in yeast: clock-driven mitochondrial cycles of energization. FEBS Lett 519:41–44PubMedCrossRefGoogle Scholar
  282. 282.
    Lloyd D, Eshantha L, Salgado J et al (2002) Cycles of mitochondrial energization driven by the ultradian clock in a continuous culture of Saccharomyces cerevisiae. Microbiology 148:3715–3724Google Scholar
  283. 283.
    Murray DB, Engelen F, Lloyd D et al (1999) Involvement of glutathione in the regulation of respiratory oscillation during a continuous culture of Saccharomyces cerevisiae. Microbiology 145:2739–2745Google Scholar
  284. 284.
    Honda K, Komoda Y, Inoue S (1994) Oxidized glutathione regulates physiological sleep in unrestrained rats. Brain Res 14:253–258CrossRefGoogle Scholar
  285. 285.
    Murray DB, Beckmann M, Kitano H (2007) Regulation of yeast oscillatory dynamics. PNAS 104:2241–2246PubMedCrossRefGoogle Scholar
  286. 286.
    Salgado E, Murray DB, Lloyd D (2002) Some antidepressant agents (Li+, monoamine oxidase type A inhibitors) perturb the ultradian clock in Saccharomyces cerevisiae. Biol Rhythm Res 33:351–361CrossRefGoogle Scholar
  287. 287.
    Fu L, Pelicano H, Liu J, Huang P, Lee CC (2002) The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111:41–50PubMedCrossRefGoogle Scholar
  288. 288.
    McDonald MJ, Rosbash M (2001) Microarray analysis and organization of circadian gene expression in Drosophila. Cell 107:567–578PubMedCrossRefGoogle Scholar
  289. 289.
    Maret S, Dorsaz S, Gurcel L et al (2007) Homer1a is a core brain molecular correlate of sleep loss. PNAS 104:20090–20095PubMedCrossRefGoogle Scholar
  290. 290.
    Mackiewicz M, Shockley KR, Romer MA et al (2007) Macromolecule biosynthesis: a key function of sleep. Physiol Genomics 31:441–457PubMedCrossRefGoogle Scholar
  291. 291.
    Jones S, Pfister-Genskow M, Benca RM et al (2008) Molecular correlates of sleep and wakefulness in the brain of the white-crowned sparrow. J Neurochem 105:46–62PubMedCrossRefGoogle Scholar
  292. 292.
    Wright K (2002) Times of our lives. Sci Am 287:59–65CrossRefGoogle Scholar
  293. 293.
    Mignot E, Taheri S, Nishino S (2002) Sleeping with the hypothalamus: emerging therapeutic targets for sleep disorders. Nat Neurosci 5:1071–1075PubMedCrossRefGoogle Scholar
  294. 294.
    Cirelli C, Faraguna U, Tononi G (2006) Changes in gene expression after long-term sleep deprivation. J Neurochem 98:1632–1645PubMedCrossRefGoogle Scholar
  295. 295.
    Fadel J, Deutch AY (2002) Anatomical substrates of orexin-dopamine interactions: lateral hypothalamic projections to the ventral tegmental area. Neuroscience 111:379–387CrossRefGoogle Scholar
  296. 296.
    Korotkova TM, Sergeeva OA, Eriksson KS et al (2003) Excitation of ventral tegmental area dopaminergic and nondopaminergic neurons by orexins/hypocretins. J Neurosci 23:7–11PubMedGoogle Scholar
  297. 297.
    Alberto CO, Trask RB, Quinlan ME et al (2006) Bidirectional dopaminergic modulation of excitatory synaptic transmission in orexin neurons. J Neurosci 26:10043–10050PubMedCrossRefGoogle Scholar
  298. 298.
    Narita M, Nagumo Y, Hashimoto S et al (2006) Direct involvement of orexinergic systems in the activation of the mesolimbic dopamine pathway and related behaviors induced by morphine. J Neurosci 26:398–405PubMedCrossRefGoogle Scholar
  299. 299.
    Rye DB (2004) The two faces of Eve: Dopamine’s modulation of wakefulness and sleep. Neurology 63:S2–S7Google Scholar
  300. 300.
    Weaver DR, Rivkees SA, Reppert SM (1992) D1-dopamine receptors activate c-fos expression in the fetal suprachiasmatic nuclei. PNAS 89:9201–9204PubMedCrossRefGoogle Scholar
  301. 301.
    Michel S, Geusz ME, Zaritsky JJ et al (1993) Circadian rhythm in membrane conductance expressed in isolated neurons. Science 259:239–241PubMedCrossRefGoogle Scholar
  302. 302.
    Manglapus MK, Iuvone PM, Underwood H et al (1999) Dopamine mediates circadian rhythms of rod-cone dominance in the Japanese quail retina. J Neurosci 19:4132–4141PubMedGoogle Scholar
  303. 303.
    Steenhard BM, Besharse JC (2000) Phase shifting the retinal circadian clock: xPer2 mRNA induction by light and dopamine. J Neurosci 20:8572–8577PubMedGoogle Scholar
  304. 304.
    Doyle SE, Grace MS, McIvor W et al (2002) Circadian rhythms of dopamine in mouse retina: the role of melatonin. Visual Neurosci 19:593–601Google Scholar
  305. 305.
    Green CB, Besharse JC (2004) Retinal circadian clocks and control of retinal physiology. J Biol Rhythms 19:91–102PubMedCrossRefGoogle Scholar
  306. 306.
    Ribelayga C, Wang Y, Mangel SC (2003) A circadian clock in the fish retina regulates dopamine release via activation of melatonin receptors. J Physiol 554(2):467–482PubMedCrossRefGoogle Scholar
  307. 307.
    Bartell PA, Miranda-Anaya M, McIvor W et al (2007) Interactions between dopamine and melatonin organize circadian rhythmicity in the retina of the green iguana. J Biol Rhythms 22:515–523PubMedCrossRefGoogle Scholar
  308. 308.
    Tosini G, Davidson AJ, Fukuhara C et al (2007) Localization of a circadian clock in mammalian photoreceptors. FASEB J 21:3866–3871PubMedCrossRefGoogle Scholar
  309. 309.
    Yujnovsky I, Hirayama J, Doi M et al (2006) Signaling mediated by the dopamine D2 receptor potentiates circadian regulation by CLOCK:BMAL1. PNAS 103:6386–6391PubMedCrossRefGoogle Scholar
  310. 310.
    Yan L, Bobula JM, Svenningsson P et al (2006) DARPP-32 involvement in the photic pathway of the circadian system. J Neurosci 26:9434–9438PubMedCrossRefGoogle Scholar
  311. 311.
    Djamgoz MBA, Hankins MW, Hirano J et al (1997) Neurobiology of retinal dopamine in relation to degenerative states of the tissue. Vision Res 37:3509–3529PubMedCrossRefGoogle Scholar
  312. 312.
    Buttner T, Kuhn W, Patzold T, Przuntek H (1994) L-DOPA improves colour vision in Parkinson’s disease. J Neural Transm 7:13–19CrossRefGoogle Scholar
  313. 313.
    Muller T, Woitalla D, Peters S et al (2002) Progress of visual dysfunction in Parkinson’s disease. Acta Neurol Scand 105:256–260PubMedCrossRefGoogle Scholar
  314. 314.
    Lee JY, Djamgoz MBA (1997) Retinal dopamine depletion in young quail mimics some of the effects of ageing on visual function. Vision Res 37:1103–1113PubMedCrossRefGoogle Scholar
  315. 315.
    Hankins MW (2000) Functional dopamine deficits in the senile rat retina. Visual Neurosci 17:839–845CrossRefGoogle Scholar
  316. 316.
    Kunert KS, Fitzgerald ME, Thomson L et al (1999) Microglia increase as photoreceptors decrease in the aging avian retina. Curr Eye Res 18:440–447PubMedCrossRefGoogle Scholar
  317. 317.
    Castaneda TR, de Prado BM, Prieto D et al (2004) Circadian rhythms of dopamine, glutamate and GABA in the striatum and nucleus accumbens of the awake rat: modulation by light. J Pineal Res 36:177–185PubMedCrossRefGoogle Scholar
  318. 318.
    McClung CA, Sidiropoulou K, Vitaterna M et al (2005) Regulation of dopaminergic transmission and cocaine reward by the Clock gene. PNAS 28:9377–9381CrossRefGoogle Scholar
  319. 319.
    Andretic R, van Swinderen B, Greenspan RJ (2005) Dopaminergic modulation of arousal in Drosophila. Curr Biol 15:1165–1175CrossRefGoogle Scholar
  320. 320.
    Andretic R, Hirsh J (2000) Circadian modulation of dopamine receptor responsiveness in Drosophila melanogaster. PNAS 97:1873–1878PubMedCrossRefGoogle Scholar
  321. 321.
    Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398PubMedCrossRefGoogle Scholar
  322. 322.
    Hurd MW, Ralph MR (1998) The significance of circadian organization for longevity in the golden hamster. J Biol Rhythms 13:430–436PubMedCrossRefGoogle Scholar
  323. 323.
    Oklejewicz M, Daan S (2002) Enhanced longevity in Tau mutant Syrian hamsters, Mesocricetus auratus. J Biol Rhythms 17:210–216PubMedCrossRefGoogle Scholar
  324. 324.
    Cayetanot F, Perret M, Aujard F (2005) Shortened seasonal photoperiodic cycles accelerate aging of the diurnal and circadian locomotor activity rhythms in a primate. J Biol Rhythms 20:461–469PubMedCrossRefGoogle Scholar
  325. 325.
    Hofman MA, Swaab DF (2006) Living by the clock: The circadian pacemaker in older people. Ageing Res Rev 5:33–51PubMedCrossRefGoogle Scholar
  326. 326.
    Davidson AJ, Sellix MT, Daniel J et al (2006) Chronic jet-lag increases mortality in aged mice. Curr Biol 16:R914–R916PubMedCrossRefGoogle Scholar
  327. 327.
    Coto-Montes A, Hardeland R (1999) Diurnal rhythm of protein carbonyl as an indicator of oxidative damage in Drosophila melanogaster: influence of clock gene alleles and deficiencies in the formation of free-radical scavengers. Biol Rhythm Res 30:383–391CrossRefGoogle Scholar
  328. 328.
    Kondratov RV, Kondratova AA, Gorbacheva VY et al (2006) Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev 20:1868–1873PubMedCrossRefGoogle Scholar
  329. 329.
    Weber M, Lauterburg T, Tobler I et al (2004) Circadian patterns of neurotransmitter related gene expression in motor regions of the rat brain. Neurosci Lett 358:17–20CrossRefGoogle Scholar
  330. 330.
    Andretic R, Chaney S, Hirsh J (1999) Requirement of circadian genes for cocaine sensitization in Drosophila. Science 285:1066–1068PubMedCrossRefGoogle Scholar
  331. 331.
    Oster H, Baeriswyl S, van der Horst GTJ et al (2003) Loss of circadian rhythmicity in aging mPer1−/− mCry2−/− mutant mice. Genes Dev 17:1366–1379PubMedCrossRefGoogle Scholar
  332. 332.
    Aujard F, Cayetanot F, Bentivoglio M et al (2006) Age-related effects on the biological clock and its behavioral output in a primate. Chronobiol Int 23:451–460PubMedCrossRefGoogle Scholar
  333. 333.
    Esquifino AI, Cano P, Jimenez V et al (2004) Changes of prolactin regulatory mechanisms in aging: 24-h rhythms of serum prolactin and median eminence and adenohypophysial concentration of dopamine, serotonin (γ-aminobutyric acid, taurine and somatostatin in young and aged rats. Exp Gerontol 39:45–52PubMedCrossRefGoogle Scholar
  334. 334.
    Gjerstad MD, Wentzel-Larsen T, Aarsland D et al (2007) Insomnia in Parkinson’s disease: frequency and progression over time. J Neurol Neurosurg Psychiatry 78:476–479PubMedCrossRefGoogle Scholar
  335. 335.
    Thannickal TC, Lai YY, Siegel JM (2007) Hypocretin (orexin) cell loss in Parkinson’s disease. Brain 130:1586–1595PubMedCrossRefGoogle Scholar
  336. 336.
    Rye DB, Jankovic J (2002) Emerging views of dopamine in modulating sleep/wake state from an unlikely source: PD. Neurol 58:341–346Google Scholar
  337. 337.
    Koh K, Evans JM, Hendricks JC et al (2006) A Drosophila model for age-associated changes in sleep:wake cycles. PNAS 103:13843–13847PubMedCrossRefGoogle Scholar
  338. 338.
    Zhu Y, Fenik P, Zhan G et al (2007) Selective loss of catecholaminergic wake-active neurons in a murine sleep apnea model. J Neurosci 27:10060–10071PubMedCrossRefGoogle Scholar
  339. 339.
    Prevarskaya NB, Skryma RN, Vacher P et al (1995) Role of tyrosine phosphorylation in potassium channel activation. J Biol Chem 270:24292–24299PubMedCrossRefGoogle Scholar
  340. 340.
    Sherer TB, Betarbet R, Stout AK et al (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.LSB-226, Department of BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations