Neurochemical Research

, Volume 34, Issue 4, pp 688–697 | Cite as

Posttraumatic Epilepsy: Hemorrhage, Free Radicals and the Molecular Regulation of Glutamate

Review Article


Traumatic brain injury causes development of posttraumatic epilepsy. Bleeding within neuropil is followed by hemolysis and deposition of hemoglobin in neocortex. Iron from hemoglobin and transferring is deposited in brains of patients with posttraumatic epilepsy. Iron compounds form reactive free radical oxidants. Microinjection of ferric ions into rodent brain results in chronic recurrent seizures and liberation of glutamate into the neuropil, as is observed in humans with epilepsy. Termination of synaptic effects of glutamate is by removal via transporter proteins. EAAC-1 is within neurons while GLT-1 and GLAST are confined to glia. Persistent down regulation of GLAST production is present in hippocampal regions in chronic seizure models. Down regulation of GLAST may be fundamental to a sequence of free radical reactions initiated by brain injury with hemorrhage. Administration of antioxidants to animals causes interruption of the sequence of brain injury responses induced by hemorrhage, suggesting that such a strategy needs to be evaluated in patients with traumatic brain injury.


Free radicals Peroxidation GLAST GLT-1 EAAC1 Transporter Ferric Epilepsy Glutamate Tocopherol 


  1. 1.
    Caveness WF (1976) Epilepsy, a product of trauma in our time. Epilepsia 17:207–215. doi:10.1111/j.1528-1157.1976.tb03398.x PubMedCrossRefGoogle Scholar
  2. 2.
    Weiss GH, Feeney DM, Caveness WF, Dillon D, Kistler JP, Mohr JP (1983) Prognostic factors for the occurrance of posttraumatic epilepsy. Arch Neurol 40:7–10PubMedGoogle Scholar
  3. 3.
    Weiss GH, Salazar AM, Vance SC, Grafman JH, Jabbari B (1986) Predicting posttraumatic epilepsy in penetrating head injury. Arch Neurol 43:771–773PubMedGoogle Scholar
  4. 4.
    Annegers JF, Hauser WA, Coan SP, Rocca WA (1998) A population-based study of seizures after traumatic brain injuries. N Engl J Med 338:20–24. doi:10.1056/NEJM199801013380104 PubMedCrossRefGoogle Scholar
  5. 5.
    Jennett B, Teasdale G (1981) Management of head injuries. F.A. Davis, PhiladelphiaGoogle Scholar
  6. 6.
    Saji M, Reis DJ (1987) Delayed transneuronal death of substantia nigra neurons prevented by gamma-aminobutyric acid agonist. Science 235:66–69. doi:10.1126/science.3798095 PubMedCrossRefGoogle Scholar
  7. 7.
    Faden AI, Demediuk P, Panter SS, Vink R (1989) The role of excitatory amino acids and NMDA receptors in traumatic brain injury. Science 244:798–800. doi:10.1126/science.2567056 PubMedCrossRefGoogle Scholar
  8. 8.
    Gall CM, Isackson PJ (1989) Limbic seizures increase neuronal production of messenger RNA for nerve growth factor. Science 245:758–761. doi:10.1126/science.2549634 PubMedCrossRefGoogle Scholar
  9. 9.
    Nieto-Sampedro M (1988) Astrocyte mitogen inhibitor related to epidermal growth factor receptor. Science 240:1784–1786. doi:10.1126/science.3289118 PubMedCrossRefGoogle Scholar
  10. 10.
    Green RC, Blume HW, Kupferschmid SB, Mesulam M-M (1989) Alterations of hippocampal acetylcholinesterase in human temporal lobe epilepsy. Ann Neurol 26:347–351. doi:10.1002/ana.410260307 PubMedCrossRefGoogle Scholar
  11. 11.
    Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L (1989) Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol 26:321–330. doi:10.1002/ana.410260303 PubMedCrossRefGoogle Scholar
  12. 12.
    Feeney DM, Walker AE (1979) The prediction of posttraumatic epilepsy. A mathematical approach. Arch Neurol 36:8–12PubMedGoogle Scholar
  13. 13.
    Salazar AM, Jabbari B, Vance SC, Grafman J, Amin D, Dillon JD (1985) Epilepsy after penetrating head injury. I. Clinical correlates: a report of the Vietnam Head Injury Study. Neurology 35:1406–1414PubMedGoogle Scholar
  14. 14.
    Jennett B (1975) Epilepsy and acute traumatic intracranial haematoma. J Neurol Neurosurg Psychiatr 38:378–381PubMedCrossRefGoogle Scholar
  15. 15.
    Kaplan HA (1961) Management of craniocerebral trauma and its relation to subsequent seizures. Epilepsia 2:111–116PubMedGoogle Scholar
  16. 16.
    DeCarolis P, D’Alessandro R, Ferrara R, Andreoli A, Sacquegna T, Lugaresi E (1984) Late seizures in patients with internal carotid and middle cerebral artery occlusive disease following ischaemic events. J Neurol Neurosurg Psychiatr 47:1345–1347CrossRefGoogle Scholar
  17. 17.
    Richardson EP, Dodge PR (1954) Epilepsy in cerebrovascular disease. Epilepsia 3(series 3):49–74PubMedCrossRefGoogle Scholar
  18. 18.
    Faught E, Peters D, Bartolucci A, Moore L, Miller PC (1989) Seizures after primary intracerebral hemorrhage. Neurology 39:1089–1093PubMedGoogle Scholar
  19. 19.
    Aisen P (1977) Some physicochemical aspects of iron metabolism Ciba Foundation Symposium. Elsevier, New York, pp 1–14CrossRefGoogle Scholar
  20. 20.
    Levitt P, Wilson WP, Wilkins RH (1971) The effects of subarachnoid blood on the electrocorticogram of the cat. J Neurosurg 35:185–191PubMedGoogle Scholar
  21. 21.
    Willmore LJ, Sypert GW, Munson JB (1978) Recurrent seizures induced by cortical iron injection: a model of post-traumatic epilepsy. Ann Neurol 4:329–336. doi:10.1002/ana.410040408 PubMedCrossRefGoogle Scholar
  22. 22.
    Payan H, Toga M, Berard-Badier M (1970) The pathology of post-traumatic epilepsies. Epilepsia 11:81–94. doi:10.1111/j.1528-1157.1970.tb03869.x PubMedCrossRefGoogle Scholar
  23. 23.
    Fong KL, McCay BP, Poyer JL, Keele BB, Misra H (1973) Evidence that peroxidation of lysosomal membranes is initiated by hydroxyl free radicals produced during flavin enzyme activity. J Biol Chem 248:7792–7797PubMedGoogle Scholar
  24. 24.
    Fong KL, McCay PB, Poyer JL, Misra HP, Keele BB (1976) Evidence of superoxide-dependent reduction of Fe3+ and its role in enzyme-generated hydroxyl radical formation. Chem Biol Interact 15:77–89. doi:10.1016/0009-2797(76)90130-7 PubMedCrossRefGoogle Scholar
  25. 25.
    Svingen BA, O’Neal FO, Aust SD (1978) The role of superoxide and singlet oxygen in lipid peroxidation. Photochem Photobiol 28:803–809. doi:10.1111/j.1751-1097.1978.tb07022.x PubMedCrossRefGoogle Scholar
  26. 26.
    Willmore LJ, Hiramatsu M, Kochi H, Mori A (1983) Formation of superoxide radicals, lipid peroxides, and edema after FeCl3 injection into rat isocortex. Brain Res 277:393–396. doi:10.1016/0006-8993(83)90954-X PubMedCrossRefGoogle Scholar
  27. 27.
    Czapski G, Ilan YA (1978) On the generation of the hydroxylation agent from superoxide radical. Can the Haber–Weiss reaction be the source of OH radicals? Photochem Photobiol 28:651–653. doi:10.1111/j.1751-1097.1978.tb06988.x CrossRefGoogle Scholar
  28. 28.
    Koppenol WH, Butler J, van Leeuwen JW (1978) The Haber–Weiss cycle. Photochem Photobiol 28:655–660. doi:10.1111/j.1751-1097.1978.tb06989.x CrossRefGoogle Scholar
  29. 29.
    Aust SD, Svingen BA (1982) The role of iron in enzymatic lipid peroxidation. In: Pryor WA (ed) Free radicals in biology. Academic Press, New York, pp 1–28Google Scholar
  30. 30.
    Baker N, Wilson L (1966) Water-soluble products of UV-irradiated, autoxidized linoleic, and linolenic acids. J Lipid Res 7:341–348PubMedGoogle Scholar
  31. 31.
    Niehaus WG, Samuelsson B (1968) Formation of malonaldehyde from phospholipid arachidonate during microsomal lipid peroxidation. Eur J Biochem 6:126–130. doi:10.1111/j.1432-1033.1968.tb00428.x PubMedCrossRefGoogle Scholar
  32. 32.
    Triggs WJ, Willmore LJ (1984) In vivo lipid peroxidation in rat brain following intracortical Fe2++ injection. J Neurochem 42:976–980. doi:10.1111/j.1471-4159.1984.tb12699.x PubMedCrossRefGoogle Scholar
  33. 33.
    Smith GJ, Dunkley WL (1962) Initiation of lipid peroxidation by a reduced metal ion. Arch Biochem Biophys 98:46–48. doi:10.1016/0003-9861(62)90142-X PubMedCrossRefGoogle Scholar
  34. 34.
    Anderson DK, Means ED (1983) Lipid peroxidation in spinal cord. FeCl2 induction and protection with antioxidants. Neurochem Pathol 1:249–264Google Scholar
  35. 35.
    Willmore LJ, Rubin JJ (1984) Effects of antiperoxidants on FeCl2-induced lipid peroxidation and focal edema in rat brain. Exp Neurol 83:62–70. doi:10.1016/0014-4886(84)90046-3 PubMedCrossRefGoogle Scholar
  36. 36.
    Triggs WJ, Willmore LJ (1994) Effect of [dl]-a-tocopherol on FeCl2-induced lipid peroxidation in rat amygdala. Neurosci Lett 180:33–36. doi:10.1016/0304-3940(94)90907-5 PubMedCrossRefGoogle Scholar
  37. 37.
    Willmore LJ, Rubin JJ (1981) Antiperoxidant pretreatment and iron-induced epileptiform discharge in the rat: EEG and histopathologic study. Neurology 31:63–69PubMedGoogle Scholar
  38. 38.
    Willmore LJ (2005) Antiepileptic drugs and neuroprotection: Current status and future roles. Epilepsy Behav 7:s25–s28Google Scholar
  39. 39.
    Willmore LJ (1990) Posttraumatic epilepsy: cellular mechanisms and implications for treatment. Epilepsia 31(suppl 3):S67–S73. doi:10.1111/j.1528-1157.1990.tb05861.x PubMedCrossRefGoogle Scholar
  40. 40.
    Hiramatsu M, Mori A, Kohno M (1984) Formation of peroxyl radical after FeCl3 injection into rat isocortex. Neurosciences 10:281–284Google Scholar
  41. 41.
    Mori A (1996) Reactive oxygen species and mechanism of induction of seizures by guanidino compounds. In: Packer L, Hiramatsu M, Yoshikawa T (eds) Free radicals in brain physiology and disorders. Academic Press, San Diego, pp 3–15Google Scholar
  42. 42.
    Jinnai G, Sawai A, Mori A (1966) Gamma guanidinobutyric acid as a convulsive substance. Nature 212:617. doi:10.1038/212617a0 PubMedCrossRefGoogle Scholar
  43. 43.
    Zhang ZH, Zuo CH, Wu XR et al (1987) The effect of lipid peroxidation on GABA uptake and release in iron-induced seizures. Chin Med J 102:24–27Google Scholar
  44. 44.
    Janjua NA, Mori A, Hiramatsu M (1990) Increased aspartic acid release from the iron-induced epileptogeic focus. Epilepsy Res 6:215–220. doi:10.1016/0920-1211(90)90076-8 PubMedCrossRefGoogle Scholar
  45. 45.
    Lafon-Cazal M, Pietri S, Culsasi M, Bockaet J (1995) NMDA-dependent superoxide production and neurotoxicity. Nature 364:535–537. doi:10.1038/364535a0 CrossRefGoogle Scholar
  46. 46.
    Rauca C, Zerbe R, Jantze H (1999) Formation of free hydroxyl radicals after pentylenetetrazol-induced seizures and kindling. Brain Res 847:347–351. doi:10.1016/S0006-8993(99)02084-3 PubMedCrossRefGoogle Scholar
  47. 47.
    Garthwaite J (1991) Glutamate, nitric oxide and cell–cell signaling in the nervous system. Trends Neurosci 14:60–67. doi:10.1016/0166-2236(91)90022-M PubMedCrossRefGoogle Scholar
  48. 48.
    Dowdon VL, Dowson TM, London ED, Bredt DS, Snyder SH (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cell cultures. Proc Natl Acad Sci USA 88:6368–6371. doi:10.1073/pnas.88.14.6368 CrossRefGoogle Scholar
  49. 49.
    Bashkatova V, Vitskova G, Narkevich V et al (2000) Nitric oxide content measured by ESR-spectroscopy in the rat brain increased during pentylenetetrazole-induced seizures. J Mol Neurosci 14:183–190. doi:10.1385/JMN:14:3:183 PubMedCrossRefGoogle Scholar
  50. 50.
    Murashima YL, Yoshii M, Suzuki J (2000) Role of nitric oxide in the epileptogenesis of El mice. Epilepsia 41(suppl 6):S195–S199. doi:10.1111/j.1528-1157.2000.tb01581.x PubMedCrossRefGoogle Scholar
  51. 51.
    Przegalinski E, Baran L, Siwanowicz J (1994) The role of nitric oxide in the kainate-induced seizures in mice. Neurosci Lett 170:74–76. doi:10.1016/0304-3940(94)90242-9 PubMedCrossRefGoogle Scholar
  52. 52.
    Yokoi I, Kabuto H, Habu H, Mori A (1994) Alpha-guanidinoglutaric acid, an endogenous convulsant, as a novel nitric oxide synthase inhibitor. J Neurochem 63:1565–1567PubMedGoogle Scholar
  53. 53.
    Buisson A, Lakhmeche N, Verrecchia C, Plotkine M, Boulu RC (1993) Nitric oxide: an endogenous anticonvulsant substance. Neuroreport 4:444–446. doi:10.1097/00001756-199304000-00027 PubMedCrossRefGoogle Scholar
  54. 54.
    Chiuch CC (1999) Neuroprotective properties of nitric oxide: neuroprotective agents. Ann NY Acad Sci 890:301–311. doi:10.1111/j.1749-6632.1999.tb08007.x CrossRefGoogle Scholar
  55. 55.
    Willmore LJ, Sypert GW, Munson JB, Hurd RW (1978) Chronic focal epileptiform discharges induced by injection of iron into rat and cat cortex. Science 200:1501–1503. doi:10.1126/science.96527 PubMedCrossRefGoogle Scholar
  56. 56.
    Willmore LJ, Sypert GW (1978) Epileptiform activity initiated by pial iontophoresis of ferrous and ferric chloride into rat cerebral cortex. Brain Res 152:406–410. doi:10.1016/0006-8993(78)90273-1 PubMedCrossRefGoogle Scholar
  57. 57.
    Khochi H (1983) Brain active oxygen, free radicals, lipid peroxidate and redox state of glutathione in the Fe3+ induced epileptic focus of the rat. Okayama Igakkai Zasshi 95:271–282Google Scholar
  58. 58.
    Reid SA, Sypert GW, Boggs WM, Willmore LJ (1979) Histopathology of the ferric-induced chronic epileptic focus in cat: a golgi study. Exp Neurol 66:205–219. doi:10.1016/0014-4886(79)90075-X PubMedCrossRefGoogle Scholar
  59. 59.
    Ueda Y, Willmore LJ, Triggs WJ (1998) Amygdalar injection of FeCl3 causes spontaneous recurrent seizures. Exp Neurol 153:123–127. doi:10.1006/exnr.1998.6869 PubMedCrossRefGoogle Scholar
  60. 60.
    Lipton SA (1996) Distinctive chemistries of NO-related species. Neurochem Int 29:111–114. doi:10.1016/0197-0186(95)00150-6 PubMedCrossRefGoogle Scholar
  61. 61.
    During MJ, Spencer DD (1993) Extracellular hippocampal glutamate and spontaneous seizure in the conscious human brain. Lancet 341:1607–1610. doi:10.1016/0140-6736(93)90754-5 PubMedCrossRefGoogle Scholar
  62. 62.
    Rothstein JD, Martin L, Levey AI, Dykes-Hoberg M, Jin L, Nash N et al (1994) Localization of neuronal and glial glutamate transporters. Neuron 13:713–725. doi:10.1016/0896-6273(94)90038-8 PubMedCrossRefGoogle Scholar
  63. 63.
    Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW et al (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitatoxicity and clearance of glutamate. Neuron 16:675–686. doi:10.1016/S0896-6273(00)80086-0 PubMedCrossRefGoogle Scholar
  64. 64.
    Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemical observations. J Neurosci 15(3 Pt 1):1835–1853PubMedGoogle Scholar
  65. 65.
    Danbolt NC, Storm-Mathisen J, Kanner BIA (1992) [Na++ K+] coupled l-glutamate transporter purified from rat brain is localized to glial cell processes. Neuroscience 51:295–310. doi:10.1016/0306-4522(92)90316-T PubMedCrossRefGoogle Scholar
  66. 66.
    Storck T, Schulte S, Hofmann K, Stoffel W (1992) Structure, expression, and functional analysis of a Na+-dependent glutamate/aspartate transporter from rat brain. Proc Natl Acad Sci USA 89:10955–10959. doi:10.1073/pnas.89.22.10955 PubMedCrossRefGoogle Scholar
  67. 67.
    Lehre KP, Levy LM, Ottersen OP, Storm-Mathisen J, Danbolt NC (1995) Differential expression of two glial glutamate transporters in the rat brain: quantitative and immunocytochemcial observations. J Neurosci 15:1835–1853PubMedGoogle Scholar
  68. 68.
    Tanaka S, Kondo S, Tanaka T, Yonemasu Y (1988) Long-term observation of rats after unilateral intra-amygdaloid injection of kainic acid. Brain Res 463:163–167. doi:10.1016/0006-8993(88)90541-0 PubMedCrossRefGoogle Scholar
  69. 69.
    Tanaka T, Tanaka S, Fujita T, Takano K, Fukida H, Sako K et al (1992) Experimental complex partial seizures induced by a microinjection of kainic acid into limbic structures. Prog Neurobiol 38:317–334. doi:10.1016/0301-0082(92)90023-8 PubMedCrossRefGoogle Scholar
  70. 70.
    Doi T, Ueda Y, Tokumaru J, Mitsuyama Y, Willmore LJ (2000) Sequential changes in glutamate transporter mRNA during Fe+++ induced epileptogenesis. Brain Res Mol Brain Res 75:105–112. doi:10.1016/S0169-328X(99)00303-4 PubMedCrossRefGoogle Scholar
  71. 71.
    Ueda Y, Willmore LJ (2000) Sequential changes in glutamate transporter protein levels during Fe+++ induced epileptogenesis. Epilepsy Res 39:201–219. doi:10.1016/S0920-1211(99)00122-9 PubMedCrossRefGoogle Scholar
  72. 72.
    Borden LA, Smith KE, Hartig PR, Branchek TA, Weinshank RL (1992) Molecular heterogeneity of gamma-aminobutyric acid (GABA) transport system. J Biol Chem 267:21098–21104PubMedGoogle Scholar
  73. 73.
    Durkin MM, Smith KE, Borden LA, Weinshank RL, Branchek TA, Gustafson EL (1995) Localization of messenger RNAs encoding three GABA transporters in rat brain: an in situ hybridization study. Brain Res Mol Brain Res 33:7–21. doi:10.1016/0169-328X(95)00101-W PubMedCrossRefGoogle Scholar
  74. 74.
    Minelli A, Brecha NC, Karschin C, DeBiasi S, Conti F (1995) GAT-1, a high affinity GABA plasma membrane transporter is localized to neurons and astroglia in the cerebral cortex. J Neurosci 15:7734–7746PubMedGoogle Scholar
  75. 75.
    Ribak CE, Tong WMY, Brecha NC (1996) GABA plasma membrane transporters. GAT-1 and GAT-2, display different distributions in the rat hippocampus. J Comp Neurol 367:595–606. doi :10.1002/(SICI)1096-9861(19960415)367:4<595::AID-CNE9>3.0.CO;2-#Google Scholar
  76. 76.
    Ueda Y, Willmore LJ (2000) Hippocampal gamma-aminobutyric acid transporter alterations following focal epileptogenesis induced in rat amygdala (in press)Google Scholar
  77. 77.
    Kanai Y (1997) Family of neural and acidic amino acid transporters: molecular biology, physiology and medical implications. Curr Opin Cell Biol 9:565–572. doi:10.1016/S0955-0674(97)80035-X PubMedCrossRefGoogle Scholar
  78. 78.
    Eccles CU, Dykes-Hoberg M, Rothstein JD (1996) Inhibition of synthesis of EAAC-1 glutamate transporter alters gamma-amonobutyric acid levels in discrete brain regions. Soc Neurosci 22:1570 AbstGoogle Scholar
  79. 79.
    Danbolt NC (1994) The high affinity uptake system for excitatory amino acids in the brain. Prog Neurobiol 44:377–396. doi:10.1016/0301-0082(94)90033-7 PubMedCrossRefGoogle Scholar
  80. 80.
    Nicholls D, Attwell D (1990) The release and uptake of excitatory amino acids. Trends Pharmacol Sci 11:462–468. doi:10.1016/0165-6147(90)90129-V PubMedCrossRefGoogle Scholar
  81. 81.
    Ueda Y, Doi T, Tokumaru J, Yokoyama H, Nakajima A, Mitsuyama U et al (2001) Collapse of extracellular glutamate regulation during epileptogenesis: down-regulation and functional failure of glutamate transporter function in rats with chronic seizures induced by dainic acid. Exp Brain Res 135:199–203. doi:10.1007/s002210000509 CrossRefGoogle Scholar
  82. 82.
    Ueda Y, Yokoyama H, Nakajima A, Tokumaru J, Doi T, Mitsuyama Y (2002) Glutamate excess and free radical formation during and following kainic acid-induced status epilepticus. Exp Brain Res 147:219–226. doi:10.1007/s00221-002-1224-4 PubMedCrossRefGoogle Scholar
  83. 83.
    Croucher MJ, Bradform HF (1989) Kindling of full limbic seizures by repeated microinjection of excitatory amino acids into the rat amygdala. Brain Res 501:58–65. doi:10.1016/0006-8993(89)91026-3 PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang WQ, Hudson PM, Sobotka TJ, Hong JS, Tilson HA (1991) Extracellular concentrations of amino acid transmitters in ventral hippocampus during and after the development of kindling. Brain Res 540:315–318. doi:10.1016/0006-8993(91)90527-3 PubMedCrossRefGoogle Scholar
  85. 85.
    Minamoto Y, Itano T, Tokuda M, Matsui H, Janjua NA, Hosokawa K et al (1992) In vivo microdialysis of amino acid neurotransmitters in the hippocampus in amygdaloid kindled rat. Brain Res 573:345–348. doi:10.1016/0006-8993(92)90786-9 PubMedCrossRefGoogle Scholar
  86. 86.
    Lothman EW, Beneath JP, Peril JB (1987) Alterations in neurotransmitter amino acids in hippocampal kindled seizures. Epilepsy Res 1:313–320. doi:10.1016/0920-1211(87)90055-6 PubMedCrossRefGoogle Scholar
  87. 87.
    Ueda Y, Tsuru N (1994) Bilateral seizure-related changes of extracellular glutamate concentation in hippocampi during development of amygdaloid kindling. Epilepsy Res 18:85–88. doi:10.1016/0920-1211(94)90036-1 PubMedCrossRefGoogle Scholar
  88. 88.
    Miller HP, Levey AI, Rothstein JD, Tzingounis AV, Conn PJ (1997) Alterations in glutamate transporter protein levels in kindling-induced epilepsy. J Neurochem 68(4):1564–1570PubMedCrossRefGoogle Scholar
  89. 89.
    Akbar MT, Torp R, Danbolt NC, Levy LM, Meldrum BS, Ottersen OP (1997) Expression of glial glutamate transporters GLT-1 and GLAST is unchanged in the hippocampus of fully kindled rats. Neuroscience 78:351–359. doi:10.1016/S0306-4522(96)00570-2 PubMedCrossRefGoogle Scholar
  90. 90.
    During MJ (1991) In vivo neurochemistry of the conscious human brain: intrahippocampal microdialysis in epilepsy. In: Robinson TE, Justice JJB (eds) Microdialysis in the neurosciences. Elsevier, Amsterdam, pp 425–442Google Scholar
  91. 91.
    Masukawa LM, Higashima M, Kim JH, Spencer DD (1989) Epileptiform discharges evoked in hippocampal brain slices from epileptic patients. Brain Res 493:168–174. doi:10.1016/0006-8993(89)91012-3 PubMedCrossRefGoogle Scholar
  92. 92.
    Babb TL, Pretorius JK, Kupfer WR, Crandall PH (1989) Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 9:2562–2574PubMedGoogle Scholar
  93. 93.
    Willmore LJ (1992) Prophylactic use of anticonvulsant drugs. In: Resor SR, Kutt H (eds) Medical treatment of epilepsy. Marcel Dekker, Inc, New York, pp 73–77Google Scholar
  94. 94.
    Penry JK, White BG, Brackett CE (1979) A controlled prospective study of the pharmacologic prophylaxis of posttraumatic epilepsy. Neurol (Tokyo) 29:600–601Google Scholar
  95. 95.
    Young B, Rapp RP, Norton JA, Haack D, Tibbs PA, Bean JR (1983) Failure of prophylactically administered phenytoin to prevent late post traumatic seizures. J Neurosurg 58:236–241PubMedGoogle Scholar
  96. 96.
    Temkin NR, Dikmen SS, Wilensky AJ, Keihm J, Chabal S, Winn HR (1990) A randomized, double-blind study of phenytoin for the prevention of post-traumatic seizures. N Engl J Med 323:497–502PubMedGoogle Scholar
  97. 97.
    Haltiner AM, Newell DW, Temkin NR, Dikmen SS, Winn HR (2000) Side effects and mortality associated with use of phenytoin for early posttraumatic seizure prophylaxis. J Neurosurg 91(4):588–592Google Scholar
  98. 98.
    Temkin NR, Dikmen SS, Anderson GD, Wilensky AJ, Holmes MD, Cohen W et al (1999) Valproate therapy for prevention of posttraumatic seizures: a randomized trial. J Neurosurg 91:593–600PubMedGoogle Scholar
  99. 99.
    Fridovich I (1974) Superoxide dismutase. Adv Enzymol 41:35–97PubMedGoogle Scholar
  100. 100.
    Orlowski M, Karkowsky A (1976) Glutathione metabolism and some possible functions of glutathione in the nervous system. Int Rev Neurobiol 19:75–121. doi:10.1016/S0074-7742(08)60702-3 PubMedCrossRefGoogle Scholar
  101. 101.
    Tappel AL (1973) Lipid peroxidation damage to cell components. Fed Proc 32:1870–1874PubMedGoogle Scholar
  102. 102.
    Rubin JJ, Willmore LJ (1980) Prevention of iron-induced epileptiform discharges in rats by treatment with antiperoxidants. Exp Neurol 67:472–480. doi:10.1016/0014-4886(80)90119-3 PubMedCrossRefGoogle Scholar
  103. 103.
    McCay PB, King MM (1980) Vitamin E: its role as a biological free radical scavenger and its relationship to the microsomal mixed-function oxidase system. In: Machlin LJ (ed) Vitamin E. Marcel Dekker, Inc, New York, pp 289–317Google Scholar
  104. 104.
    Rehncrona S, Smith DS, Akesson B, Westerberg E, Siesjo BK (1980) Peroxidative changes in brain cortical fatty acids and phospholipids, as characterized during Fe2+-and ascorbic acid-stimulated lipid peroxidation in vitro. J Neurochem 34:1630–1638. doi:10.1111/j.1471-4159.1980.tb11254.x PubMedCrossRefGoogle Scholar
  105. 105.
    Tappel AL (1972) Vitamin E and free radical peroxidation of lipids. Ann NY Acad Sci 203:12–28. doi:10.1111/j.1749-6632.1972.tb27851.x PubMedCrossRefGoogle Scholar
  106. 106.
    Witting LA (1980) Vitamin E and lipid antioxidants in free-radical-initiated reactions. In: Pryor WA (ed) Free Radicals in biology, vol 4. Academic Press, New York, pp 295–319Google Scholar
  107. 107.
    Diplock AT, Lucy JA (1973) The biochemical modes of action of vitamin E and selenium: a hypothesis. FEBS Lett 29:205–210. doi:10.1016/0014-5793(73)80020-1 PubMedCrossRefGoogle Scholar
  108. 108.
    Lucy JA (1972) Functional and structural aspects of biological membranes: a suggested structural role for vitamin E in the control of membrane permeability and stability. Ann NY Acad Sci 203:4–11. doi:10.1111/j.1749-6632.1972.tb27849.x PubMedCrossRefGoogle Scholar
  109. 109.
    Hall ED, Yonkers PA, McCall JM, Braughler JM (1988) Effects of the 21-aminosteroid U74006F on experimental head injury in mice. J Neurosurg 68:456–461PubMedGoogle Scholar
  110. 110.
    Willmore LJ (1995) Post-traumatic epilepsy: mechanisms and prevention. Psychiatry Clin Neurosci 49(3):S171–S173. doi:10.1111/j.1440-1819.1995.tb02166.x [Review]PubMedCrossRefGoogle Scholar
  111. 111.
    Chan PH, Fishman RA (1980) Transient formation of superoxide radicals in polyunsaturated fatty acid-induced brain swelling. J Neurochem 35:1004–1007. doi:10.1111/j.1471-4159.1980.tb07100.x PubMedCrossRefGoogle Scholar
  112. 112.
    Fishman RA, Chan PH, Lee J, Quan S (1979) Effects of superoxide free radicals on the induction of brain edema. Neurology 29:546Google Scholar
  113. 113.
    Wagner FC, Stewart WB (1981) Effect of trauma dose on spinal cord edema. J Neurosurg 54:8802–8806Google Scholar
  114. 114.
    Leppik IE, Willmore LJ, Homan RW, Fromm GH, Oommen KJ, Penry JK et al (1993) Efficacy and safety of zonsiamede: results of a multicenter study. Epilepsy Res 14:165–173. doi:10.1016/0920-1211(93)90021-X PubMedCrossRefGoogle Scholar
  115. 115.
    Komatsu M, Hiramatsu M, Willmore LJ (2000) Zonisamide reduces the increase in 8-hydroxy-2’-deoxyguanosine levels formed during iron-induced epileptogenesis in the brains of rats. Epilepsia 41:1091–1094. doi:10.1111/j.1528-1157.2000.tb00312.x PubMedCrossRefGoogle Scholar
  116. 116.
    Noda Y, Mori A, Packer L (1999) Zonisamide inhibits nitric oxide synthase activity induced by N-methyl-d-aspartate and buthioninesulfoximine in the rat hippocampus. Res Commun Mol Pathol Pharmacol 105:23–33PubMedGoogle Scholar
  117. 117.
    Yamamoto N, Kabuto H, Matsumoto S et al (2002) a-tocopheryl-L-ascorbate-2-O-phosphate diester, a hydroxyl radical scavenger, prevents the occurreence of epileptic foci in a rat model of post-traumatic epilepsy. Pathophysiol 8:205–214. doi:10.1016/S0928-4680(02)00009-3 CrossRefGoogle Scholar
  118. 118.
    Mori A, Yokoi I, Noda Y, Willmore LJ (2004) Natural antioxidants may prevent posttraumatic epileplsy: a proposal based on experimental animal studies. Acta Med Okayama 58:111–118PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Neurology & PsychiatrySaint Louis University School of MedicineSt. LouisUSA
  2. 2.Department of PsychiatryMiyazaki Medical CollegeMiyazakiJapan

Personalised recommendations