Neurochemical Research

, Volume 33, Issue 12, pp 2615–2628

Activation of Inflammatory Response by a Combination of Growth Factors in Cuprizone-Induced Demyelinated Brain Leads to Myelin Repair

  • Juan Carlos Biancotti
  • Shalini Kumar
  • Jean de Vellis
Original Paper

Abstract

In vivo remyelination promoted by a combination of four oligodendrocyte specific growth factors (GFs) in cuprizone-induced demyelinated mice brains was described recently by our group [1]. Here we report activation of inflammatory response in mice brain following cuprizone-induced demyelination and its further enhancement immediately after injection of growth factors in vivo, while no significant inflammatory response was evident in GFs-injected normal brains. Cuprizone-induced demyelination was accompanied by increased expression of inflammatory cytokines, TNFα and IL-1β, anti-inflammatory cytokines TGFβ, IL-10 and increased levels of chemokines, CCL2, CCL5, and CXCL10, produced by resident microglia and astrocytes. During demyelination, involvement of oxidative stress was evident by disruption of mitochondrial structure and temporal decline in reduced glutathione levels, later returning to normal. Increase in the cytokines and chemokines was further enhanced within 2 days post injection (dpi) of GFs, coinciding with signal for repair via activation of pAkt and NFκB transcription factor reported earlier. Upregulation of mRNA and protein level of antioxidant genes, metallothionein (MT) I/II and activity of a cytosolic oxidoreductase enzyme, glycerolphosphate-3 dehydrogenase (cGPDH) occurred, resulting in a metabolic shuttle with an increase in glycerol in mice brains during period of demyelination and early GF-mediated repair.

Keywords

Cytokines Chemokines Metallothionein I/II cGPDH 1H-NMR spectroscopy Electron microscopy 

References

  1. 1.
    Kumar S, Biancotti JC, Yamaguchi M et al (2007) Combination of growth factors enhances remyelination in a cuprizone-induced demyelination mouse model. Neurochem Res 32:783–797. doi:10.1007/s11064-006-9208-6 PubMedCrossRefGoogle Scholar
  2. 2.
    Ben-Hur T, Rogister B, Murray K et al (1998) Growth and fate of PSA-NCAM+ precursors of the postnatal brain. J Neurosci 18:5777–5788PubMedGoogle Scholar
  3. 3.
    Zhang H, Vutskits L, Calaora V et al (2004) A role for the polysialic acid-neural cell adhesion molecule in PDGF-induced chemotaxis of oligodendrocyte precursor cells. J Cell Sci 117:93–103. doi:10.1242/jcs.00827 PubMedCrossRefGoogle Scholar
  4. 4.
    Reynolds R, Hardy R (1997) Oligodendroglial progenitors labeled with the O4 antibody persist in the adult rat cerebral cortex in vivo. J Neurosci Res 47:455–470. doi :10.1002/(SICI)1097-4547(19970301)47:5<455::AID-JNR1>3.0.CO;2-GPubMedCrossRefGoogle Scholar
  5. 5.
    Lossi L, Merighi A (2003) In vivo cellular and molecular mechanisms of neuronal apoptosis in the mammalian CNS. Prog Neurobiol 69:287–312. doi:10.1016/S0301-0082(03)00051-0 PubMedCrossRefGoogle Scholar
  6. 6.
    Foote AK, Blakemore WF (2005) Inflammation stimulates remyelination in areas of chronic demyelination. Brain 128:528–539. doi:10.1093/brain/awh417 PubMedCrossRefGoogle Scholar
  7. 7.
    Setzu A, Lathia JD, Zhao C, Wells K, Rao MS, Ffrench-Constant C, Franklin RJ (2006) Inflammation stimulates myelination by transplanted oligodendrocyte precursor cells. Glia 54:297–303 doi:10.1002/glia.20371 Google Scholar
  8. 8.
    de Vellis J, Inglish D (1968) Hormonal control of glycerolphosphate dehydrogenase in the rat brain. J Neurochem 15:1061–1070. doi:10.1111/j.1471-4159.1968.tb06824.x PubMedCrossRefGoogle Scholar
  9. 9.
    Kumar S, Cole R, Chiappelli F et al (1989) Differential regulation of oligodendrocyte markers by glucocorticoids: post-transcriptional regulation of both proteolipid protein and myelin basic protein and transcriptional regulation of glycerol phosphate dehydrogenase. Proc Natl Acad Sci USA 86:6807–6811. doi:10.1073/pnas.86.17.6807 PubMedCrossRefGoogle Scholar
  10. 10.
    Leveille PJ, McGinnis JF, Maxwell DS et al (1980) Immunocytochemical localization of glycerol-3-phosphate dehydrogenase in rat oligodendrocytes. Brain Res 196:287–305. doi:10.1016/0006-8993(80)90397-2 PubMedCrossRefGoogle Scholar
  11. 11.
    McGinnis JF, de Vellis J (1974) Purification and characterization of rat brain glycerol phosphate dehydrogenase. Biochim Biophys Acta 364:17–27PubMedGoogle Scholar
  12. 12.
    Ambrosini E, Aloisi F (2004) Chemokines and glial cells: a complex network in the central nervous system. Neurochem Res 29:1017–1038. doi:10.1023/B:NERE.0000021246.96864.89 PubMedCrossRefGoogle Scholar
  13. 13.
    Tran PB, Banisadr G, Ren D et al (2007) Chemokine receptor expression by neural progenitor cells in neurogenic regions of mouse brain. J Comp Neurol 500:1007–1033. doi:10.1002/cne.21229 PubMedCrossRefGoogle Scholar
  14. 14.
    Huang D, Shi FD, Jung S et al (2006) The neuronal chemokine CX3CL1/fractalkine selectively recruits NK cells that modify experimental autoimmune encephalomyelitis within the central nervous system. FASEB J 20:896–905. doi:10.1096/fj.05-5465com PubMedCrossRefGoogle Scholar
  15. 15.
    Ludwin SK (1978) Central nervous system demyelination and remyelination in the mouse: an ultrastructural study of cuprizone toxicity. Lab Invest 39:597–612PubMedGoogle Scholar
  16. 16.
    Pasquini LA, Calatayud CA, Bertone Una AL et al (2007) The neurotoxic effect of cuprizone on oligodendrocytes depends on the presence of pro-inflammatory cytokines secreted by microglia. Neurochem Res 32:279–292. doi:10.1007/s11064-006-9165-0 PubMedCrossRefGoogle Scholar
  17. 17.
    Petronilli V, Zoratti M (1990) A characterization of cuprizone-induced giant mouse liver mitochondria. J Bioenerg Biomembr 22:663–677. doi:10.1007/BF00809070 PubMedCrossRefGoogle Scholar
  18. 18.
    Russanov EM, Ljutakova SG (1980) Effect of cuprizone on copper exchange and superoxide dismutase activity in rat liver. Gen Pharmacol 11:535–538. doi:10.1016/0306-3623(80)90086-5 PubMedGoogle Scholar
  19. 19.
    Venturini G (1973) Enzymic activities and sodium, potassium and copper concentrations in mouse brain and liver after cuprizone treatment in vivo. J Neurochem 21:1147–1151. doi:10.1111/j.1471-4159.1973.tb07569.x PubMedCrossRefGoogle Scholar
  20. 20.
    Cheng JD, de Vellis J (2000) Oligodendrocytes as glucocorticoids target cells: functional analysis of the glycerol phosphate dehydrogenase gene. J Neurosci Res 59:436–445. doi :10.1002/(SICI)1097-4547(20000201)59:3<436::AID-JNR19>3.0.CO;2-ZPubMedCrossRefGoogle Scholar
  21. 21.
    de Vellis J, Inglish D (1973) Age-dependent changes in the regulation of glycerolphosphate dehydrogenase in the rat brain and in a glial cell line. Prog Brain Res 40:321–330. doi:10.1016/S0079-6123(08)60697-4 PubMedCrossRefGoogle Scholar
  22. 22.
    Link WA, Kauselmann G, Mellstrom B et al (2000) Induction of glycerol phosphate dehydrogenase gene expression during seizure and analgesia. J Neurochem 75:1419–1428. doi:10.1046/j.1471-4159.2000.0751419.x PubMedCrossRefGoogle Scholar
  23. 23.
    Masters JN, Finch CE, Nichols NR (1994) Rapid increase in glycerol phosphate dehydrogenase mRNA in adult rat brain: a glucocorticoid-dependent stress response. Neuroendocrinology 60:23–35. doi:10.1159/000126716 PubMedCrossRefGoogle Scholar
  24. 24.
    Nicols NR, Dokas L, Ting SM et al (1996) Hippocampal responses to corticosterone and stress, one of which is the 35, 000 M(r) protein, glycerol phosphate dehydrogenase. J Neuroendocrinol 8:867–876. doi:10.1046/j.1365-2826.1996.05298.x PubMedCrossRefGoogle Scholar
  25. 25.
    Thorburne SK, Juurlink BH (1996) Low glutathione and high iron govern the susceptibility of oligodendroglial precursors to oxidative stress. J Neurochem 67:1014–1022PubMedGoogle Scholar
  26. 26.
    Matsushima GK, Morell P (2001) The neurotoxicant, cuprizone, as a model to study demyelination and remyelination in the central nervous system. Brain Pathol 11:107–116PubMedGoogle Scholar
  27. 27.
    Asakura K, Hunter SF, Rodriguez M (1997) Effects of transforming growth factor-beta and platelet-derived growth factor on oligodendrocyte precursors: insights gained from a neuronal cell line. J Neurochem 68:2281–2290PubMedCrossRefGoogle Scholar
  28. 28.
    Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81:871–927PubMedGoogle Scholar
  29. 29.
    Chen Y, Swanson RA (2003) Astrocytes and brain injury. J Cereb Blood Flow Metab 23:137–149. doi:10.1097/00004647-200302000-00001 PubMedCrossRefGoogle Scholar
  30. 30.
    Chew LJ, Takanohashi A, Bell M (2006) Microglia and inflammation: impact on developmental brain injuries. Ment Retard Dev Disabil Res Rev 12:105–112. doi:10.1002/mrdd.20102 PubMedCrossRefGoogle Scholar
  31. 31.
    Du Y, Dreyfus CF (2002) Oligodendrocytes as providers of growth factors. J Neurosci Res 68:647–654. doi:10.1002/jnr.10245 PubMedCrossRefGoogle Scholar
  32. 32.
    Hanisch UK (2002) Microglia as a source and target of cytokines. Glia 40:140–155. doi:10.1002/glia.10161 PubMedCrossRefGoogle Scholar
  33. 33.
    Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–S240. doi:10.1038/sj.bjp.0706400 PubMedCrossRefGoogle Scholar
  34. 34.
    Rohl C, Lucius R, Sievers R (2007) The effect of activated microglia on astrogliosis parameters in astrocyte cultures. Brain Res 1129:43–52. doi:10.1016/j.brainres.2006.10.057 PubMedCrossRefGoogle Scholar
  35. 35.
    Streit WJ (2002) Microglia as neuroprotective, immunocompetent cells of the CNS. Glia 40:133–139. doi:10.1002/glia.10154 PubMedCrossRefGoogle Scholar
  36. 36.
    Bedard AP, Chernomoretz TA, Vallieres L (2007) Identification of genes preferentially expressed by microglia and upregulated during cuprizone-induced inflammation. Glia 55:777–789. doi:10.1002/glia.20477 PubMedCrossRefGoogle Scholar
  37. 37.
    Remington LT, Babcock AA, Zehntner SP et al (2007) Microglial recruitment, activation, and proliferation in response to primary demyelination. Am J Pathol 170:1713–1724. doi:10.2353/ajpath.2007.060783 PubMedCrossRefGoogle Scholar
  38. 38.
    Belmadani A, Tran PB, Ren D et al (2006) Chemokines regulate the migration of neural progenitors to sites of neuroinflammation. J Neurosci 26:3182–3191. doi:10.1523/JNEUROSCI.0156-06.2006 PubMedCrossRefGoogle Scholar
  39. 39.
    Dziembowska M, Tham TN, Lau P et al (2005) A role for CXCR4 signaling in survival and migration of neural and oligodendrocyte precursors. Glia 50(3):258–269. doi:10.1002/glia.20170 PubMedCrossRefGoogle Scholar
  40. 40.
    Maysami SD, Zobel NF, Heine S et al (2006) Oligodendrocyte precursor cells express a functional chemokine receptor CCR3: implications for myelination. J Neuroimmunol 178:17–23. doi:10.1016/j.jneuroim.2006.05.021 PubMedCrossRefGoogle Scholar
  41. 41.
    Hu X, Hicks CW, He W et al (2006) Bace1 modulates myelination in the central and peripheral nervous system. Nat Neurosci 9:1520–1525. doi:10.1038/nn1797 PubMedCrossRefGoogle Scholar
  42. 42.
    Hidalgo J, Penkowa M, Giralt M et al (2002) Metallothionein expression and oxidative stress in the brain. Methods Enzymol 348:238–249. doi:10.1016/S0076-6879(02)48642-9 PubMedCrossRefGoogle Scholar
  43. 43.
    Penkowa M, Espejo C, Ortega-Aznar A et al (2003) Metallothionein expression in the central nervous system of multiple sclerosis patients. Cell Mol Life Sci 60:1258–1266. doi:10.1007/s000180300013 PubMedGoogle Scholar
  44. 44.
    Penkowa M, Florit S, Giralt M et al (2005) Metallothionein reduces central nervous system inflammation, neurodegeneration, and cell death following kainic acid-induced epileptic seizures. J Neurosci Res 79:522–534. doi:10.1002/jnr.20387 PubMedCrossRefGoogle Scholar
  45. 45.
    Penkowa M, Carrasco J, Giralt M et al (2000) Altered central nervous system cytokine-growth factor expression profiles and angiogenesis in metallothionein-I + II deficient mice. J Cereb Blood Flow Metab 20:1174–1189. doi:10.1097/00004647-200008000-00003 PubMedCrossRefGoogle Scholar
  46. 46.
    Penkowa M, Espejo C, Martinez-Caceres EM et al (2001) Altered inflammatory response and increased neurodegeneration in metallothionein I + II deficient mice during experimental autoimmune encephalomyelitis. J Neuroimmunol 119:248–260. doi:10.1016/S0165-5728(01)00357-5 PubMedCrossRefGoogle Scholar
  47. 47.
    Ebadi M, Brown-Borg H, El Refaey H et al (2005) Metallothionein-mediated neuroprotection in genetically engineered mouse models of Parkinson’s disease. Brain Res Mol Brain Res 134:67–75. doi:10.1016/j.molbrainres.2004.09.011 PubMedCrossRefGoogle Scholar
  48. 48.
    Penkowa M, Giralt M, Camats J et al (2002) Metallothionein 1 + 2 protect the CNS during neuroglial degeneration induced by 6-aminonicotinamide. J Comp Neurol 444:174–189. doi:10.1002/cne.10149 PubMedCrossRefGoogle Scholar
  49. 49.
    Espejo C, Penkowa M, Demestre M et al (2005) Time-course expression of CNS inflammatory, neurodegenerative tissue repair markers and metallothioneins during experimental autoimmune encephalomyelitis. Neuroscience 132:1135–1149. doi:10.1016/j.neuroscience.2005.01.057 PubMedCrossRefGoogle Scholar
  50. 50.
    Penkowa M, Camats J, Giralt M et al (2003) Metallothionein-I overexpression alters brain inflammation and stimulates brain repair in transgenic mice with astrocyte-targeted interleukin-6 expression. Glia 42:287–306. doi:10.1002/glia.10208 PubMedCrossRefGoogle Scholar
  51. 51.
    Misra RR, Crance KA, Bare RM et al (1997) Lack of correlation between the inducibility of metallothionein mRNA and metallothionein protein in cadmium-exposed rodents. Toxicology 117:99–109. doi:10.1016/S0300-483X(96)03557-3 PubMedCrossRefGoogle Scholar
  52. 52.
    Vasconcelos MH, Tam SC, Beattie JH et al (1996) Evidence for differences in the post-transcriptional regulation of rat metallothionein isoforms. Biochem J 315:665–671PubMedGoogle Scholar
  53. 53.
    Vasconcelos MH, Tam SC, Hesketh JE et al (2002) Metal- and tissue-dependent relationship between metallothionein mRNA and protein. Toxicol Appl Pharmacol 182:91–97. doi:10.1006/taap.2002.9428 PubMedCrossRefGoogle Scholar
  54. 54.
    Futakawa N, Kondoh M, Ueda S et al (2006) Involvement of oxidative stress in the synthesis of metallothionein induced by mitochondrial inhibitors. Biol Pharm Bull 29:2016–2020. doi:10.1248/bpb.29.2016 PubMedCrossRefGoogle Scholar
  55. 55.
    Frykholm PL, Langstrom HB, Persson L et al (2001) Increase of interstitial glycerol reflects the degree of ischaemic brain damage: a PET and microdialysis study in a middle cerebral artery occlusion-reperfusion primate model. J Neurol Neurosurg Psychiatry 71:455–461. doi:10.1136/jnnp.71.4.455 PubMedCrossRefGoogle Scholar
  56. 56.
    Hillered LJ, Enblad VP, Persson L (1998) Interstitial glycerol as a marker for membrane phospholipid degradation in the acutely injured human brain. J Neurol Neurosurg Psychiatry 64:486–491PubMedCrossRefGoogle Scholar
  57. 57.
    Graca DL, Blakemore WF (1986) Delayed remyelination in rat spinal cord following ethidium bromide injection. Neuropathol Appl Neurobiol 12:593–605. doi:10.1111/j.1365-2990.1986.tb00162.x PubMedCrossRefGoogle Scholar
  58. 58.
    Ludwin SK (1980) Chronic demyelination inhibits remyelination in the central nervous system. An analysis of contributing factors. Lab Invest 43:382–387PubMedGoogle Scholar
  59. 59.
    Bieber AJ, Kerr S, Rodriguez M (2003) Efficient central nervous system remyelination requires T cells. Ann Neurol 53:680–684. doi:10.1002/ana.10578 PubMedCrossRefGoogle Scholar
  60. 60.
    Kotter MR, Setzu A, Sim FJ et al (2001) Macrophage depletion impairs oligodendrocyte remyelination following lysolecithin-induced demyelination. Glia 35:204–212. doi:10.1002/glia.1085 PubMedCrossRefGoogle Scholar
  61. 61.
    Kotter MR, Zhao C, van Rooijen N et al (2005) Macrophage-depletion induced impairment of experimental CNS remyelination is associated with a reduced oligodendrocyte progenitor cell response and altered growth factor expression. Neurobiol Dis 18:166–175. doi:10.1016/j.nbd.2004.09.019 PubMedCrossRefGoogle Scholar
  62. 62.
    Li WW, Setzu A, Zhao C et al (2005) Minocycline-mediated inhibition of microglia activation impairs oligodendrocyte progenitor cell responses and remyelination in a non-immune model of demyelination. J Neuroimmunol 158:58–66. doi:10.1016/j.jneuroim.2004.08.011 PubMedCrossRefGoogle Scholar
  63. 63.
    Arnett HA, Mason J, Marino M et al (2001) TNF alpha promotes proliferation of oligodendrocyte progenitors and remyelination. Nat Neurosci 4:1116–1122. doi:10.1038/nn738 PubMedCrossRefGoogle Scholar
  64. 64.
    Arnett HA, Wang Y, Matsushima GK et al (2003) Functional genomic analysis of remyelination reveals importance of inflammation in oligodendrocyte regeneration. J Neurosci 23:9824–9832PubMedGoogle Scholar
  65. 65.
    Mason JL, Suzuki K, Chaplin DD et al (2001) Interleukin-1beta promotes repair of the CNS. J Neurosci 21:7046–7052PubMedGoogle Scholar
  66. 66.
    Tourbah A, Linnington C, Bachelin C et al (1997) Inflammation promotes survival and migration of the CG4 oligodendrocyte progenitors transplanted in the spinal cord of both inflammatory and demyelinated EAE rats. J Neurosci Res 50:853–861. doi :10.1002/(SICI)1097-4547(19971201)50:5<853::AID-JNR21>3.0.CO;2-0PubMedCrossRefGoogle Scholar
  67. 67.
    Arnett HA, Hellendall RP, Matsushima GK et al (2002) The protective role of nitric oxide in a neurotoxicant-induced demyelinating model. J Immunol 168:427–433PubMedGoogle Scholar
  68. 68.
    Kotter MR, Li WW, Zhao C et al (2006) Myelin impairs CNS remyelination by inhibiting oligodendrocyte precursor cell differentiation. J Neurosci 26:328–332. doi:10.1523/JNEUROSCI.2615-05.2006 PubMedCrossRefGoogle Scholar
  69. 69.
    Robinson S, Tani M, Strieter RM et al (1998) The chemokine growth-regulated oncogene-alpha promotes spinal cord oligodendrocyte precursor proliferation. J Neurosci 18:10457–10463PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Juan Carlos Biancotti
    • 1
  • Shalini Kumar
    • 1
  • Jean de Vellis
    • 1
  1. 1.Mental Retardation Research Center, Semel Institute for Neuroscience, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations