Neurochemical Research

, 34:386 | Cite as

A Prospective Study of Transsulfuration Biomarkers in Autistic Disorders

  • David A. Geier
  • Janet K. Kern
  • Carolyn R. Garver
  • James B. Adams
  • Tapan Audhya
  • Mark R. Geier
Original Paper

Abstract

The goal of this study was to evaluate transsulfuration metabolites in participants diagnosed with autism spectrum disorders (ASDs). Transsulfuration metabolites, including: plasma reduced glutathione (GSH), plasma oxidized glutathione (GSSG), plasma cysteine, plasma taurine, plasma sulfate, and plasma free sulfate among participants diagnosed with ASDs (n = 38) in comparison to age-matched neurotypical controls were prospectively evaluated. Testing was conducted using Vitamin Diagnostics, Inc. (CLIA-approved). Participants diagnosed with ASDs had significantly (P < 0.001) decreased plasma reduced GSH, plasma cysteine, plasma taurine, plasma sulfate, and plasma free sulfate relative to controls. By contrast, participants diagnosed with ASDs had significantly (P < 0.001) increased plasma GSSG relative to controls. The present observations are compatible with increased oxidative stress and a decreased detoxification capacity, particularly of mercury, in patients diagnosed with ASDs. Patients diagnosed with ASDs should be routinely tested to evaluate transsulfuration metabolites, and potential treatment protocols should be evaluated to potentially correct the transsulfuration abnormalities observed.

Keywords

Heavy metal Metabolic endophenotype Sulfation Sulfur 

References

  1. 1.
    Autism and Developmental Disabilities Monitoring Network Surveillance Year 2002 Principal Investigators; Centers for Disease Control and Prevention (2007) Prevalence of autism spectrum disorders-autism and developmental disabilities monitoring network, 13 sites, United States, 2002. MMWR Surveill Summ 56(1):12–28Google Scholar
  2. 2.
    Eigsti IM, Shapiro T (2003) A systems neuroscience approach to autism: biological, cognitive, and clinical perspectives. Ment Retard Dev Disabil Res Rev 9(3):205–215. doi:10.1002/mrdd.10081 PubMedCrossRefGoogle Scholar
  3. 3.
    White JF (2003) Intestinal pathophysiology in autism. Exp Biol Med (Maywood) 228(6):639–649Google Scholar
  4. 4.
    Sweeten TL, Bowyer SL, Posey DJ et al (2003) Increased prevalence of familial autoimmunity in probands with pervasive developmental disorders. Pediatrics 112(5):e420. doi:10.1542/peds.112.5.e420 PubMedCrossRefGoogle Scholar
  5. 5.
    Bolte S, Poustka F (2002) The relation between general cognitive level and adaptive behavior domains in individuals with autism with and without co-morbid mental retardation. Child Psychiat Hum Dev 33(2):165–172. doi:10.1023/A:1020734325815 PubMedCrossRefGoogle Scholar
  6. 6.
    Herbert MR, Russo JP, Yang S et al (2006) Autism and environmental genomics. Neurotoxicology 27(5):671–684. doi:10.1016/j.neuro.2006.03.017 PubMedCrossRefGoogle Scholar
  7. 7.
    James SJ, Melnyk S, Jernigan S et al (2006) Metabolic endophenotype and related genotypes are associated with oxidative stress in children with autism. Am J Med Genet B Neuropsychiatr Genet 141(8):947–956. doi:10.1002/ajmg.b.30366 Google Scholar
  8. 8.
    Geier DA, Geier MR (2006) A clinical and laboratory evaluation of methionine cycle-transsulfuration and androgen pathway markers in children with autistic disorders. Horm Res 66(4):182–188. doi:10.1159/000094467 PubMedCrossRefGoogle Scholar
  9. 9.
    James SJ, Cutler P, Melnyk S et al (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80(6):1611–1617PubMedGoogle Scholar
  10. 10.
    Waring RH, Klovrza LV (2000) Sulphur metabolism in autism. J Nutr Environ Med 10(1):25–32. doi:10.1080/13590840050000861 CrossRefGoogle Scholar
  11. 11.
    Finkelstein JD (1998) The metabolism of homocysteine: pathways and regulation. Eur J Pediatr 157(Suppl 2):S40–S44. doi:10.1007/PL00014300 PubMedCrossRefGoogle Scholar
  12. 12.
    Schopler E, Reichler RJ, DeVellis RF et al (1980) Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J Autism Dev Disord 10(1):91–103. doi:10.1007/BF02408436 PubMedCrossRefGoogle Scholar
  13. 13.
    Bouligand J, Deroussent A, Paci A (2006) Liquid chromatography-tandem mass spectrometry assay of reduced and oxidized glutathione and main precursors in mice liver. J Chromatogr B Analyt Technol Biomed Life Sci 832(1):67–74. doi:10.1016/j.jchromb.2005.12.037 PubMedCrossRefGoogle Scholar
  14. 14.
    Han Q, Xu M, Tang L et al (2004) Homogeneous enzymatic colorimetric assay for total cysteine. Clin Chem 50(7):1229–1231. doi:10.1373/clinchem.2004.032920 PubMedCrossRefGoogle Scholar
  15. 15.
    Hopkins PC, Kay IS, Davies WE (1989) A rapid method for the determination of taurine in biological tissue. Neurochem Int 15(4):429–432. doi:10.1016/0197-0186(89)90160-5 CrossRefGoogle Scholar
  16. 16.
    Chattaraj S, Das AK (1992) Indirect atomic absorption spectrometric determination of sulfate in human blood serum. Analyst (London) 117(3):413–416. doi:10.1039/an9921700413 CrossRefGoogle Scholar
  17. 17.
    Boismenu D, Robitaille L, Hamadeh MJ (1998) Measurement of sulfate concentrations and tracer/tracee ratios in biological fluids by electrospray tandem mass spectrometry. Anal Biochem 261(1):93–99. doi:10.1006/abio.1998.2715 PubMedCrossRefGoogle Scholar
  18. 18.
    Watanabe N, Kamei S, Ohkubo A et al (1986) Urinary protein as measured with a pyrogallol red-molybdate complex, manually and in a Hitachi 726 automated analyzer. Clin Chem 32(8):1551–1554PubMedGoogle Scholar
  19. 19.
    Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic Biol Med 30(11):1191–1212. doi:10.1016/S0891-5849(01)00480-4 PubMedCrossRefGoogle Scholar
  20. 20.
    Dickinson DA, Moellering DR, Iles KE et al (2003) Cytoprotection against oxidative stress and the regulation of glutathione synthesis. Biol Chem 384(4):527–537. doi:10.1515/BC.2003.061 PubMedCrossRefGoogle Scholar
  21. 21.
    Klatt P, Lamas S (2000) Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem 267(16):4928–4944. doi:10.1046/j.1432-1327.2000.01601.x PubMedCrossRefGoogle Scholar
  22. 22.
    Dickinson DA, Forman HJ (2002) Glutathione in defense and signaling: Lessons from a small thiol. Ann NY Acad Sci 973:488–504PubMedCrossRefGoogle Scholar
  23. 23.
    Sagrista ML, Garcia AF, Africa De Madariaga M et al (2002) Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-L-cysteine and glutathione against free radical-induced lipid peroxidation. Free Radic Res 36(3):329–340. doi:10.1080/10715760290019354 PubMedCrossRefGoogle Scholar
  24. 24.
    Deplancke B, Gaskins HR (2002) Redox control of the transsulfuration and glutathione biosynthesis pathways. Curr Opin Clin Nutr Metab Care 5(1):85–92. doi:10.1097/00075197-200201000-00015 PubMedCrossRefGoogle Scholar
  25. 25.
    Pastore A, Federici G, Bertini E et al (2003) Analysis of glutathione: Implication in redox and detoxification. Clin Chim Acta 333(1):19–39. doi:10.1016/S0009-8981(03)00200-6 PubMedCrossRefGoogle Scholar
  26. 26.
    Hall AG (1999) The role of glutathione in the regulation of apoptosis. Eur J Clin Invest 29(3):238–245. doi:10.1046/j.1365-2362.1999.00447.x PubMedCrossRefGoogle Scholar
  27. 27.
    Griffith OW (1999) Biologic and pharmacologic regulation of mammalian glutathione synthesis. Free Radic Biol Med 27(9–10):922–935. doi:10.1016/S0891-5849(99)00176-8 PubMedCrossRefGoogle Scholar
  28. 28.
    Konstantareas MM, Homatidis S (1987) Ear infections in autistic and normal children. J Autism Dev Disord 17(4):585–594. doi:10.1007/BF01486973 PubMedCrossRefGoogle Scholar
  29. 29.
    Zimmerman AW, Jyonouchi H, Comi AM et al (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33(3):195–201. doi:10.1016/j.pediatrneurol.2005.03.014 PubMedCrossRefGoogle Scholar
  30. 30.
    Horvath K, Perman JA (2002) Autistic disorder and gastrointestinal disease. Curr Opin Pediatr 14(5):583–587. doi:10.1097/00008480-200210000-00004 PubMedCrossRefGoogle Scholar
  31. 31.
    Jyonouchi H, Geng L, Ruby A et al (2005) Dysregulated innate immune responses in young children with autism spectrum disorders: Their relationship to gastrointestinal symptoms and dietary intervention. Neuropsychobiology 51(2):77–85. doi:10.1159/000084164 PubMedCrossRefGoogle Scholar
  32. 32.
    Yorbik O, Sayal A, Akay C et al (2002) Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids 67(5):341–343. doi:10.1054/plef.2002.0439 PubMedCrossRefGoogle Scholar
  33. 33.
    Chauhan A, Chauhan V, Brown WT et al (2004) Oxidative stress in autism: Increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferring-the antioxidant proteins. Life Sci 75(21):2539–2549. doi:10.1016/j.lfs.2004.04.038 PubMedCrossRefGoogle Scholar
  34. 34.
    Zoroglu SS, Armutcu F, Ozen S et al (2004) Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci 254(3):143–147. doi:10.1007/s00406-004-0456-7 PubMedGoogle Scholar
  35. 35.
    Ballatori N, Clarkson TW (1985) Biliary secretion of glutathione and of glutathione-metal complexes. Fundam Appl Toxicol 5(5):816–831. doi:10.1016/0272-0590(85)90165-4 PubMedCrossRefGoogle Scholar
  36. 36.
    Ookhtens M, Kaplowitz N (1998) Role of the liver in interorgan homeostasis of glutathione and cyst(e)ine. Semin Liver Dis 18(4):313–329PubMedCrossRefGoogle Scholar
  37. 37.
    Alberti A, Pirrone P, Elia M et al (1999) Sulphation deficit in ‘low-functioning’ autistic children: a pilot study. Biol Psychiatry 46(3):420–424. doi:10.1016/S0006-3223(98)00337-0 PubMedCrossRefGoogle Scholar
  38. 38.
    Strous RD, Golubchik P, Maayan R et al (2005) Lowered DHEA-S plasma levels in adult individuals with autistic disorder. Eur Neuropsychopharmacol 15(3):305–309. doi:10.1016/j.euroneuro.2004.12.004 PubMedCrossRefGoogle Scholar
  39. 39.
    Yazbak FE, Lang-Radosh KL (2001) Increasing incidence of autism. Adverse Drug React Toxicol Rev 20(1):60–63PubMedGoogle Scholar
  40. 40.
    McFadden SA (1996) Phenotypic variation in xenobiotic metabolism and adverse environmental response: focus on sulfur-dependent detoxification pathways. Toxicology 111(1–3):43–65. doi:10.1016/0300-483X(96)03392-6 PubMedCrossRefGoogle Scholar
  41. 41.
    Ahearn GA, Mandal PK, Mandal A (2004) Mechanisms of heavy-metal sequestration and detoxification in crustaceans: a review. J Comp Physiol [B] 174(6):439–452. doi:10.1007/s00360-004-0438-0 Google Scholar
  42. 42.
    Lee A, Beck L, Brown RJ et al (1999) Identification of a mammalian brain sulfate transporter. Biochem Biophys Res Commun 263(1):123–129. doi:10.1006/bbrc.1999.0947 PubMedCrossRefGoogle Scholar
  43. 43.
    Parsons RB, Waring RH, Williams AC et al (2001) Cysteine dioxygenase: regional localization of protein and mRNA in rat brain. J Neurosci Res 65(1):78–84. doi:10.1002/jnr.1130 PubMedCrossRefGoogle Scholar
  44. 44.
    Kern JK, Jones AM (2006) Evidence of toxicity, oxidative stress, and neuronal insult in autism. J Toxicol Environ Health B Crit Rev 9(6):485–499. doi:10.1080/10937400600882079 PubMedCrossRefGoogle Scholar
  45. 45.
    Thomas DJ, Fisher HL, Sumler MR et al (1987) Sexual differences in the excretion of organic and inorganic mercury by methyl mercury-treated rats. Environ Res 43(1):203–216. doi:10.1016/S0013-9351(87)80072-5 PubMedCrossRefGoogle Scholar
  46. 46.
    Oliveira FR, Ferreira JR, dos Santos CM et al (2006) Estradiol reduces cumulative mercury and associated disturbances in the hypothalamus-piuitary axis of ovariectomized rats. Ecotoxicol Environ Saf 63(3):488–493. doi:10.1016/j.ecoenv.2004.12.024 PubMedCrossRefGoogle Scholar
  47. 47.
    Kane RE, Tector J, Brems JJ et al (1990) Sulfation and glucuronidation of acetaminophen by cultured hepatocytes replicating in vivo metabolism. ASAIO Trans 36(3):M607–M610PubMedGoogle Scholar
  48. 48.
    Prudova A, Albin M, Bauman Z et al (2007) Testosterone regulation of homocysteine metabolism modulates redox status in human prostate cancer cells. Antioxid Redox Signal 9(11):1875–1881. doi:10.1089/ars.2007.1712 PubMedCrossRefGoogle Scholar
  49. 49.
    Clarkson TW, Nordberg GF, Sager PR (1985) Reproductive and developmental toxicity of metals. Scand J Work Environ Health 11(3 Spec No):145–154PubMedGoogle Scholar
  50. 50.
    Geier DA, Geier MR (2007) A prospective assessment of androgen levels in patients with autistic spectrum disorders: biochemical underpinnings and suggested therapies. Neuroendocrinol Lett 28(5):565–573PubMedGoogle Scholar
  51. 51.
    Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3):511–533. doi:10.2307/3454543 PubMedCrossRefGoogle Scholar
  52. 52.
    Mutter J, Naumann J, Schneider R (2005) Mercury and autism: accelerating evidence? Neuroendocrinol Lett 26(5):439–446PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • David A. Geier
    • 1
    • 2
  • Janet K. Kern
    • 3
    • 4
  • Carolyn R. Garver
    • 3
  • James B. Adams
    • 5
  • Tapan Audhya
    • 6
  • Mark R. Geier
    • 7
  1. 1.Institute of Chronic Illnesses, Inc.Silver SpringUSA
  2. 2.CoMeD, Inc.Silver SpringUSA
  3. 3.Autism Treatment CenterDallasUSA
  4. 4.University of Texas Southwestern Medical CenterDallasUSA
  5. 5.Arizona State UniversityTempeUSA
  6. 6.Vitamin DiagnosticsCliffwood BeachUSA
  7. 7.The Genetic Centers of AmericaSilver SpringUSA

Personalised recommendations