Neurochemical Research

, Volume 34, Issue 2, pp 327–332 | Cite as

Parkin Expression Profile in Dopamine D3 Receptor Knock-Out Mice Brains

  • Velia D’Agata
  • Adriana Tiralongo
  • Alessandro Castorina
  • Gian Marco Leggio
  • Vincenzo Micale
  • Maria Luisa Carnazza
  • Filippo Drago
Original Paper

Abstract

Patients affected by autosomic recessive juvenile parkinsonism (ARJP) exhibit parkin gene mutations with brain decrease in dopamine D2/D3 binding sites. To date, there are no data indicating whether the reduction in dopamine D3 receptors (DRD3) may be associated with the expression of specific parkin variants. In the present study we investigated parkin expression profile in DRD3 knock-out mice brains. RT-PCR analysis was performed to assess qualitative changes in parkin isoforms’ distribution pattern and in exons’ expression both in wild type controls and dopamine D3 receptor’s knock-out mice. Real-time PCR was performed to quantify single exons mRNA. Results demonstrated that exons 1, 2, 4, 6, 7, 8, were more expressed in wild type compared to dopamine D3 receptor KO mice brains while some other (3, 9, 10) were lower expressed. The expression levels of exons 5, 11 and 12 did not change in both animal groups. Our analysis was confirmed by western blot, which showed that parkin protein levels were influenced by the absence of DRD3.

Keywords

Dopamine D3 receptor Parkin isoforms Parkin exons expression Autosomic recessive juvenile parkinsonism 

Notes

Acknowledgments

These experiments were supported by the PhD program in Neuropharmacology, University of Catania, Medical School, Italy. We thank Mr P. Asero for his technical support and Mrs F. Capilli for her administrative support.

References

  1. 1.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608. doi: 10.1038/33416 PubMedCrossRefGoogle Scholar
  2. 2.
    Takahashi H, Ohama E, Suzuki S, Horikawa Y, Ishikawa A, Morita T et al (1994) Familial juvenile parkinsonism: clinical and pathologic study in a family. Neurology 44:437–441PubMedGoogle Scholar
  3. 3.
    Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T, Harhangi BS, Meco G, Denèfle P, Wood NW, Agid Y, Brice A, French Parkinson’s Disease Genetics Study Group & European Consortium on Genetic Susceptibility in Parkinson’s Disease (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342:1560–1567. doi: 10.1056/NEJM200005253422103 PubMedCrossRefGoogle Scholar
  4. 4.
    Klein C, Pramstaller PP, Kis B, Page CC, Kann M, Leung J et al (2000) Parkin deletions in a family with adult-onset, tremor-dominant parkinsonism: expanding the phenotype. Ann Neurol 48:65–71. doi:10.1002/1531-8249(200007)48:1<65::AID-ANA10>3.0.CO;2-LPubMedCrossRefGoogle Scholar
  5. 5.
    Cookson MR (2003) Parkin’s substrates and the pathways leading to neuronal damage. Neuromolecular Med 3:1–13. doi: 10.1385/NMM:3:1:1 PubMedCrossRefGoogle Scholar
  6. 6.
    Imai Y, Soda M, Takahashi R (2000) Parkin suppresses unfolded protein stress- induced cell death through its E3 ubiquitin-protein ligase activity. J Biol Chem 275:35661–35664. doi: 10.1074/jbc.C000447200 PubMedCrossRefGoogle Scholar
  7. 7.
    Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305. doi: 10.1038/77060 PubMedCrossRefGoogle Scholar
  8. 8.
    Stichel CC, Augustin M, Kühn K, Zhu XR, Engels P, Ullmer C et al (2000) Parkin expression in the adult mouse brain. Eur J Neurosci 12:4181–4194. doi: 10.1046/j.1460-9568.2000.01314.x PubMedCrossRefGoogle Scholar
  9. 9.
    Kitada T, Asakawa S, Minoshima S, Mizuno Y, Shimizu N (2000) Molecular cloning, gene expression, and identification of a splicing variant of the mouse parkin gene. Mamm Genome 11:417–421. doi: 10.1007/s003350010080 PubMedCrossRefGoogle Scholar
  10. 10.
    Sunada Y, Saito F, Matsumura K, Shimizu T (1998) Differential expression of the parkin gene in the human brain and peripheral leukocytes. Neurosci Lett 254:180–182. doi: 10.1016/S0304-3940(98)00697-1 PubMedCrossRefGoogle Scholar
  11. 11.
    D’Agata V, Zhao W, Cavallaro S (2000) Cloning and distribution of the rat parkin mRNA. Brain Res Mol Brain Res 75:345–349. doi: 10.1016/S0169-328X(99)00286-7 PubMedCrossRefGoogle Scholar
  12. 12.
    Joyce JN (2001) Dopamine D3 receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol Ther 90:231–259. doi: 10.1016/S0163-7258(01)00139-5 PubMedCrossRefGoogle Scholar
  13. 13.
    Civelli O, Bunzow JR, Grandy DK (1993) Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol 33:281–307. doi: 10.1146/annurev.pa.33.040193.001433 PubMedCrossRefGoogle Scholar
  14. 14.
    Le Foll B, Diaz J, Sokoloff P (2005) Neuroadaptations to hyperdopaminergia in dopamine D3 receptor-deficient mice. Life Sci 76:1281–1296. doi: 10.1016/j.lfs.2004.09.018 PubMedCrossRefGoogle Scholar
  15. 15.
    Scherfler C, Khan NL, Pavese N, Eunson L, Graham E, Lees AJ et al (2004) Striatal and cortical pre- and postsynaptic dopaminergic dysfunction in sporadic parkin-linked parkinsonism. Brain 127:1332–1342. doi: 10.1093/brain/awh150 PubMedCrossRefGoogle Scholar
  16. 16.
    Joseph JD, Wang YM, Miles PR, Budygin EA, Picetti R, Gainetdinov RR et al (2002) Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D(3) receptors. Neuroscience 112:39–49. doi: 10.1016/S0306-4522(02)00067-2 PubMedCrossRefGoogle Scholar
  17. 17.
    Sriram SR, Li X, Ko HS, Chung KK, Wong E, Lim KL et al (2005) Familial-associated mutations differentially disrupt the solubility, localization, binding and ubiquitination properties of parkin. Hum Mol Genet 14:2571–2586. doi: 10.1093/hmg/ddi292 PubMedCrossRefGoogle Scholar
  18. 18.
    Wang C, Tan JM, Ho MW, Zaiden N, Wong SH, Chew CL et al (2005) Alterations in the solubility and intracellular localization of parkin by several familial Parkinson’s disease-linked point mutations. J Neurochem 93:422–431. doi: 10.1111/j.1471-4159.2005.03023.x PubMedCrossRefGoogle Scholar
  19. 19.
    Wang C, Ko HS, Thomas B, Tsang F, Chew KC, Tay SP et al (2005) Stress- induced alterations in parkin solubility promote parkin aggregation and compromise parkin’s protective function. Hum Mol Genet 14:3885–3897. doi: 10.1093/hmg/ddi413 PubMedCrossRefGoogle Scholar
  20. 20.
    Goldberg MS, Fleming SM, Palacino JJ, Cepeda C, Lam HA, Bhatnagar A et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635. doi: 10.1074/jbc.M308947200 PubMedCrossRefGoogle Scholar
  21. 21.
    Bradford MM (1976) A rapid and sensitive method for the quantification of micrograms quantities of proteins utilizing the principle of protein dye binding. Anal Biochem 72:248–254. doi: 10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  22. 22.
    Pascale A, Fortino I, Govoni S, Trabucchi M, Wetsel WC, Battaini F (1996) Functional impairment in protein kinase C by RACK1 (receptor for activated C kinase 1) deficiency in aged rat brain cortex. J Neurochem 67:2471–2477PubMedCrossRefGoogle Scholar
  23. 23.
    Sovago J, Makkai B, Gulyas B, Hall H (2005) Autoradiographic mapping of dopamine-D2/D3 receptor stimulated [35S]GTPgammaS binding in the human brain. Eur J Neurosci 22:65–71. doi: 10.1111/j.1460-9568.2005.04192.x PubMedCrossRefGoogle Scholar
  24. 24.
    Viaggiano D, Ruocco LA, Sadile AG (2003) Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder. Neurosci Biobehav Rev 27:623–637. doi: 10.1016/j.neubiorev.2003.08.006 CrossRefGoogle Scholar
  25. 25.
    Cookson MR (2005) The biochemistry of Parkinson’s disease. Annu Rev Biochem 74:29–52. doi: 10.1146/annurev.biochem.74.082803.133400 PubMedCrossRefGoogle Scholar
  26. 26.
    Horowitz JM, Vernace VA, Myers J, Stachowiak MK, Hanlon DW, Fraley GS et al (2001) Immunodetection of Parkin protein in vertebrate and invertebrate brains: a comparative study using specific antibodies. J Chem Neuroanat 21:75–93. doi: 10.1016/S0891-0618(00)00111-3 PubMedCrossRefGoogle Scholar
  27. 27.
    LaVoie MJ, Ostaszewski BL, Weihofen A, Schlossmacher MG, Selkoe DJ (2005) Dopamine covalently modifies and functionally inactivates parkin. Nat Med 11:1214–1221. doi: 10.1038/nm1314 PubMedCrossRefGoogle Scholar
  28. 28.
    Wong ES, Tan JM, Wang C, Zhang Z, Tay SP, Zaiden N et al (2007) Relative sensitivity of parkin and other cysteine containing enzymes to stress-induced solubility alterations. J Biol Chem 282:12310–12318. doi: 10.1074/jbc.M609466200 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Velia D’Agata
    • 1
  • Adriana Tiralongo
    • 1
  • Alessandro Castorina
    • 1
  • Gian Marco Leggio
    • 2
  • Vincenzo Micale
    • 2
  • Maria Luisa Carnazza
    • 1
  • Filippo Drago
    • 2
  1. 1.Department of Anatomy, Diagnostic Pathology, Legal Medicine, Hygiene and Public HealthUniversity of Catania Medical SchoolCataniaItaly
  2. 2.Department of Experimental and Clinical PharmacologyUniversity of Catania Medical SchoolCataniaItaly

Personalised recommendations