Neurochemical Research

, Volume 34, Issue 2, pp 268–273 | Cite as

Antagonistic Effect of Luzindole in Mice Treated with Melatonin During the Infection with the Venezuelan Equine Encephalomyelitis Virus

  • Nereida Valero
  • Anaís Nery
  • Ernesto Bonilla
  • Luz Marina Espina
  • Leonor Chacin-Bonilla
  • Florencio Añez
  • Mery Maldonado
  • Eddy Meleán
Original Paper


The effect of Luzindole (LZ) in mice treated with melatonin (MEL) during the infection with the Venezuelan equine encephalomyelitis (VEE) virus was examined. Melatonin (500 μg/Kg b.w.) was administered daily 3 days before and 5 days after the infection. Luzindole (5 mg/Kg b.w.) was injected intraperitoneally 3 days before (pre-infection) or 5 days after (post-infection) the infection. Mortality rates in the infected mice treated both with MEL and LZ were higher than in those treated with MEL alone in which the lowest brain and serum viral titers were detected. On the third post-infection day, viral titers of the MEL + VEE + LZ (pre-infection) group were higher than those of the remainder groups. On the fifth day, viral titers in infected mice were similar to those of the MEL + VEE + LZ (pre-infection) group, but higher than those detected in the MEL + VEE + LZ (post-infection). In conclusion, the protective effect of MEL in mice infected with VEE virus was inhibited by LZ suggesting that this protection is mediated by MEL receptors.


Melatonin Luzindole Venezuelan equine encephalomyelitis 


  1. 1.
    Reiter RJ (1991) Melatonin synthesis: multiplicity of regulation. Kynurenine and Serotonin pathways. Plenum Press, New York, pp 149–158Google Scholar
  2. 2.
    Caroleo MC, Frasca D, Nistico G, Doria G (1992) Melatonin as immunomodulador in immunodeficient mice. Immunopharmacol 23:81–89. doi: 10.1016/0162-3109(92)90031-7 CrossRefGoogle Scholar
  3. 3.
    Maestroni GJ (1999) Therapeutic potential of Melatonin in immunodeficiency states, viral diseases and cancer. Adv Exp Med Biol 467:217–226PubMedGoogle Scholar
  4. 4.
    Maestroni GJ, Conti A, Pierpaoli W (1987) Role of the pineal gland in immunity. III. Melatonin enhances the antibody response via an opiatergic mechanism. Clin Exp Immunol 68:384–391PubMedGoogle Scholar
  5. 5.
    Colombo L, Chen GJ, Lopez MC, Watson RR (1992) Melatonin induced increase in gamma-interferon production by murine splenocytes. Immunol Lett 33:123–126. doi: 10.1016/0165-2478(92)90035-M PubMedCrossRefGoogle Scholar
  6. 6.
    Morrey K, Mclachlan A, Serkin C, Bakouche O (1994) Activation of human monocytes by the pineal hormone Melatonin. J Immunol 153:2671–2680PubMedGoogle Scholar
  7. 7.
    Pioli C, Caroleo C, Nistico G, Doria G (1993) Melatonin increases antigen presentation and amplifies specific and nonspecific signal for t-cell proliferation. Int J Immunopharmacol 15:463–468. doi: 10.1016/0192-0561(93)90060-C PubMedCrossRefGoogle Scholar
  8. 8.
    Atre D, Blumenthal EJ (1998) Melatonin: immune modulation of spleen cell in young, middle-aged and senescent mice. Mech Ageing Dev 103:255–268. doi: 10.1016/S0047-6374(98)00046-3 PubMedCrossRefGoogle Scholar
  9. 9.
    Bonilla E, Valero N, Chacin-Bonilla L, Medina-Leendertz S (2004) Melatonin and viral infections. J Pineal Res 36:73–79. doi: 10.1046/j.1600-079X.2003.00105.x PubMedCrossRefGoogle Scholar
  10. 10.
    Ben-Nathan D, Maestroni GJ, Lustig S, Conti A (1995) Protective effects of Melatonin in mice infected with encephalitis viruses. Arch Virol 140:223–230. doi: 10.1007/BF01309858 PubMedCrossRefGoogle Scholar
  11. 11.
    Bonilla E, Valero N, Pons H, Chacin-Bonilla L (1997) Melatonin protects mice infected with Venezuelan equine encephalomyelitis virus. Cell Mol Life Sci 53:430–434. doi: 10.1007/s000180050051 PubMedCrossRefGoogle Scholar
  12. 12.
    Dubocovich ML, Masana M, Iacob S, Sauri D (1997) Melatonin receptor antagonists that differentiate between the human MEL1a and MEL1b recombinant subtypes are used to assess the pharmacological profile of the rabbit retina ML1 presynaptic heteroreceptor. Arch Pharmacol 355:365–375. doi: 10.1007/PL00004956 CrossRefGoogle Scholar
  13. 13.
    Gonzalez-Haba M, Garcia-Mauriño S, Calvo R, Goberna JR, Guerrero JM (1995) High-affinity binding of melatonin by human circulating T lymphocytes (CD4+). FASEB J 9:1331–1335PubMedGoogle Scholar
  14. 14.
    Guerrero JM, Calvo JR, Oscuna C, Lopez-Gonzalez MA (1994) Binding of melatonin by limphoid cell in humans and rodents. Adv Pineal Res 7:109–117Google Scholar
  15. 15.
    Lopez-Gonzalez MA, Calvo JR, Oscura C, Guerrero JM (1992) Interaction of melatonin with human lymphocytes: Evidence for binding sites coupled to potentiation of ciclic AMP stimulated vasoactive intestinal peptide and activation of cyclic GMP. J Pineal Res 12:97–104. doi: 10.1111/j.1600-079X.1992.tb00034.x PubMedCrossRefGoogle Scholar
  16. 16.
    Maestroni G (1995) T-helper 2 lymphocytes as peripheral target of Melatonin signaling. J Pineal Res 18:84–89. doi: 10.1111/j.1600-079X.1995.tb00144.x PubMedCrossRefGoogle Scholar
  17. 17.
    Neri B, De Leonardis V, Gemelli MT, Di Loro F, Mottola A, Ponchietti R, Raugei A, Cini G (1998) Melatonin as biological response modifier in cancer patients. Anticancer Res 18(2B):1329–1332PubMedGoogle Scholar
  18. 18.
    Maestroni GJ, Conti A, Pierpaoli W (1986) Role of the pineal gland in immunity. Circadian synthesis and release of melatonin modulates the antibodies response and antagonize the immunosuppressive effect of corticosterone. J Neuroimmunol 13:19–30. doi: 10.1016/0165-5728(86)90047-0 PubMedCrossRefGoogle Scholar
  19. 19.
    Reiter RJ, Melchiorri D, Sewerynek E (1995) A review of the evidence supporting melatonin’s role as an antioxidant. J Pineal Res 18:1–11. doi: 10.1111/j.1600-079X.1995.tb00133.x PubMedCrossRefGoogle Scholar
  20. 20.
    Valero N, Espina LM, Bonilla E, Mosquera J (2007) Melatonin decreases nitric oxide production and lipid peroxidation and increases interleukin-1 beta in the brain of mice infected by the Venezuelan equine encephalomyelitis virus. J Pineal Res 42:107–112. doi: 10.1111/j.1600-079X.2006.00381.x PubMedCrossRefGoogle Scholar
  21. 21.
    Garcia J, Esparza J (1979) Importancia de la respuesta celular en el fenómeno encefálico inducido por el virus de la encefalitis equina venezolana. Patología 16(4):215–229Google Scholar
  22. 22.
    Dubocovich ML (1988) Luzindole (N-0774): a novel melatonin receptor antagonist. J Pharmacol Exp 246:902–910Google Scholar
  23. 23.
    Behan WM, McDonald M, Darlington LG (1999) Oxidative stress as a mechanism for quinolinic acid-inducced hippocampal damage: protection by melatonin and deprenil. Br J Pharmacol 128:1754–1760. doi: 10.1038/sj.bjp.0702940 PubMedCrossRefGoogle Scholar
  24. 24.
    Bergold G, Mazzali R (1968) Plaque formation by arboviruses. J Gen Virol 2:273–284PubMedCrossRefGoogle Scholar
  25. 25.
    Reed L, Muench M (1938) A simple method of stimating fifty percent end points. Am J Trop Med Hyg 27:493–497Google Scholar
  26. 26.
    Rosato R, Macasaet F, Jahrling P (1988) Enzyme-linked immunosorbent assay detection of immunoglobulins G and M to Venezuelan Equine Encephalomyelitis virus in vaccinated and naturally infected humans. J Clin Microbiol 26:421–425PubMedGoogle Scholar
  27. 27.
    Rabinowitz S, Adeler W (1973) Host defense during primary Venezuelan Equine Encephalomyelitis virus infection in mice. J Immunol 110:1345–1353PubMedGoogle Scholar
  28. 28.
    Valero N, Bonilla E, Pons H, Chacin-Bonilla L (2002) Melatonin Induces changes in serum cytokines in mice infected with the Venezuelan equine encephalomyelitis virus. Trans R Soc Trop Med Hyg 96:1–4. doi: 10.1016/S0035-9203(02)90121-5 CrossRefGoogle Scholar
  29. 29.
    Bonilla E, Valero N, Montero E, Añez F, Maldonado MB, Espina LM et al (2006) TH1–TH2 and pro inflammatory cytokines in serum and brain of mice infected with the Venezuela equine encephalomyelitis virus. Int J Infect Dis 10(Suppl 1):S310Google Scholar
  30. 30.
    Fassbender K, Schneider S, Bertsch T, Schlueter D, Fatar M, Ragoschke A et al (2000) Temporal profile of release of interleukin-1β in neurotrauma. Neurosci Lett 284:135–138. doi: 10.1016/S0304-3940(00)00977-0 PubMedCrossRefGoogle Scholar
  31. 31.
    Bonilla E, Valero N, Chacin-Bonilla L, Pons H, Larreal Y, Medina-Leendertz S et al (2003) Melatonin increases Interleukin-1β and decreases Tumor Necrosis Factor Alpha in the brain of mice infected with the Venezuelan Equine Encephalomyelitis Virus. Neurochem Res 28:687–692. doi: 10.1023/A:1022897314108 CrossRefGoogle Scholar
  32. 32.
    Masana MI, Doolen S, Cagatay E, AL-Ghoul W, Duckles S, Dubocovich ML, Krause D (2002) MT2 melatonin receptors are present and functional in rat caudal artery. J Pharmacol Exp Ther 302:1295–1302. doi: 10.1124/jpet.302.3.1295 PubMedCrossRefGoogle Scholar
  33. 33.
    Hunt A, Walid M, Al-Ghoul GilletteM, Dubocovich ML (2001) Activation of melatonin receptors in rat suprachiasmatic nucleus phase advances the circadian clock. Am J Physiol Cell Physiol 280:c110–c118PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Nereida Valero
    • 1
  • Anaís Nery
    • 2
  • Ernesto Bonilla
    • 1
    • 3
  • Luz Marina Espina
    • 1
  • Leonor Chacin-Bonilla
    • 1
  • Florencio Añez
    • 1
  • Mery Maldonado
    • 1
  • Eddy Meleán
    • 1
  1. 1.Virology Section, Instituto de Investigaciones Clinicas “Dr. Américo Negrette”, Facultad de MedicinaUniversidad del ZuliaMaracaiboVenezuela
  2. 2.Biology Department, Facultad Experimental de CienciasUniversidad del ZuliaMaracaiboVenezuela
  3. 3.Centro de Investigaciones BiomédicasIVIC-ZuliaMaracaiboVenezuela

Personalised recommendations