Neurochemical Research

, Volume 34, Issue 2, pp 260–267 | Cite as

Binge Ethanol-induced Neurodegeneration in Rat Organotypic Brain Slice Cultures: Effects of PLA2 Inhibitor Mepacrine and Docosahexaenoic Acid (DHA)

  • James BrownIII
  • Nicholas Achille
  • Edward J. Neafsey
  • Michael A. CollinsEmail author
Original Paper


Using rat organotypic hippocampal-entorhinal cortical (HEC) slice cultures, we examined whether phospholipase A2 (PLA2) activity is involved in binge alcohol (ethanol)-induced neurodegeneration, and whether docosahexaenoic acid (DHA; 22:6n-3), a fish oil-enriched fatty acid that is anti-inflammatory in brain damage models, is neuroprotective. Assessed with propidium iodide and lactate dehydrogenase (LDH) leakage, neurodamage from ethanol (6 days 100 mM ethanol with four withdrawal periods) was prevented by the PLA2 pan-inhibitor, mepacrine. Also, ethanol-dependent neurodegeneration—particularly in the entorhinal region—was significantly ameliorated by DHA supplementation (25 μM); however, adrenic acid, a 22:4n-6 analog, was ineffective. Consistent with PLA2 activation, [3H] liberation was approximately fivefold greater in [3H]arachidonic acid-preloaded HEC slice cultures during ethanol withdrawal compared to controls, and DHA supplementation suppressed [3H] release to control levels. DHA might antagonize PLA2 activity directly or suppress upstream activators (e.g., oxidative stress); however, other DHA mechanisms could be important in subdueing ethanol-induced PLA2-dependent and independent neuroinflammatory processes.


Alcohol Withdrawal Hippocampus Entorhinal cortex Phospholipase A2 Arachidonic acid Neuroprotection 



Arachidonic acid


Adrenic acid


Docosahexaenoic acid


Hippocampal-entorhinal cortical




Protein kinase B


Phospholipase A2




Reactive oxygen species



Supported by the Loyola University Medical Center (LUMC) Alcohol Research Program (NIH T32 AA13527) and an LUMC Potts award to M.A.C.


  1. 1.
    Hunt WA (1993) Are binge drinkers more at risk of developing brain damage? Alcohol 10:559–561. doi: 10.1016/0741-8329(93)90083-Z PubMedCrossRefGoogle Scholar
  2. 2.
    Harris BR, Gibson DA, Prendergast MA, Blanchard JA, Holley RC, Hart SR et al (2003) The neurotoxicity induced by ethanol withdrawal in mature organotypic hippocampal slices might involve cross-talk between metabotropic glutamate type 5 receptors and N-methyl-D-aspartate receptors. Alcohol Clin Exp Res 27:1724–1735. doi: 10.1097/01.ALC.0000093601.33119.E3 PubMedCrossRefGoogle Scholar
  3. 3.
    Prendergast MA, Harris BR, Mullholland PJ, Blanchard JA 2nd, Gibson DA, Holley RC et al (2004) Hippocampal CA1 region neurodegeneration produced by ethanol withdrawal requires activation of intrinsic polysynaptic hippocampal pathways and function of N-methyl-D-aspartate receptors. Neuroscience 124:869–877. doi: 10.1016/j.neuroscience.2003.12.013 PubMedCrossRefGoogle Scholar
  4. 4.
    Collins MA, Corso TD, Neafsey EJ (1996) Neuronal degeneration in rat cerebrocortical and olfactory regions during subchronic “binge” intoxication with ethanol: possible explanation for olfactory deficits in alcoholics. Alcohol Clin Exp Res 20:284–292. doi: 10.1111/j.1530-0277.1996.tb01641.x PubMedCrossRefGoogle Scholar
  5. 5.
    Switzer RC, Majchrowicz E, Weight F (1982) Ethanol-induced argyrophilia in entorhinal cortex of rat. Anat Rec 202:186AGoogle Scholar
  6. 6.
    Crews FT, Braun CJ, Hoplight B, Switzer RC 3rd, Knapp DJ (2000) Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats. Alcohol Clin Exp Res 24:1712–1723. doi: 10.1111/j.1530-0277.2000.tb01973.x PubMedCrossRefGoogle Scholar
  7. 7.
    Collins MA, Zou JY, Neafsey EJ (1998) Brain damage due to episodic alcohol exposure in vivo and in vitro: furosemide neuroprotection implicates edema-based mechanism. FASEB J 12:221–230PubMedGoogle Scholar
  8. 8.
    Hamelink C, Hampson A, Wink DA, Eiden LE, Eskay RL (2005) Comparison of cannabidiol, antioxidants, and diuretics in reversing binge ethanol-induced neurotoxicity. J Pharmacol Exp Ther 314:780–788. doi: 10.1124/jpet.105.085779 PubMedCrossRefGoogle Scholar
  9. 9.
    Corso TD, Mostafa HM, Collins MA, Neafsey EJ (1998) Brain neuronal degeneration caused by episodic alcohol intoxication in rats: effects of nimodipine, 6, 7-dinitro-quinoxaline-2, 3-dione, and MK-801. Alcohol Clin Exp Res 22:217–224PubMedGoogle Scholar
  10. 10.
    Brown JC III, Belmadani A, Kumar S, Neafsey EJ, Collins MA (2005) Neuroinflammatory-like mechanisms in alcohol-induced brain damage. J Neurochem 94:90Google Scholar
  11. 11.
    Lambert IH, Pedersen SF, Poulsen KA, Lambert IH, Pedersen SF, Poulsen KA (2006) Activation of PLA2 isoforms by cell swelling and ischaemia/hypoxia. Acta Physiol (Oxf) 187:75–85. doi: 10.1111/j.1748-1716.2006.01557.x CrossRefGoogle Scholar
  12. 12.
    Sun GY, Xu J, Jensen MD, Simonyi A (2004) Phospholipase A2 in the central nervous system: implications for neurodegenerative diseases. J Lipid Res 45:205–213. doi: 10.1194/jlr.R300016-JLR200 PubMedCrossRefGoogle Scholar
  13. 13.
    Sun GY, Horrocks LA, Farooqui AA (2007) The roles of NADPH oxidase and phospholipases A2 in oxidative and inflammatory responses in neurodegenerative diseases. J Neurochem 103:1–16. doi: 10.1111/j.1471-4159.2007.05003.x PubMedCrossRefGoogle Scholar
  14. 14.
    Martinez J, Moreno JJ (2001) Role of Ca2+-independent phospholipase A2 on arachidonic acid release induced by reactive oxygen species. Arch Biochem Biophys 392:257–262. doi: 10.1006/abbi.2001.2439 PubMedCrossRefGoogle Scholar
  15. 15.
    Caro AA, Cederbaum AI (2006) Role of cytochrome P450 in phospholipase A2- and arachidonic acid-mediated cytotoxicity. Free Radic Biol Med 40:364–375. doi: 10.1016/j.freeradbiomed.2005.10.044 PubMedCrossRefGoogle Scholar
  16. 16.
    Maia RC, Culver CA, Laster SM, Maia RC, Culver CA, Laster SM (2006) Evidence against calcium as a mediator of mitochondrial dysfunction during apoptosis induced by arachidonic acid and other free fatty acids. J Immunol 177:6398–6404PubMedGoogle Scholar
  17. 17.
    Fang KM, Chang WL, Wang SM, Su MJ, Wu ML (2008) Arachidonic acid induces both Na+ and Ca2+ entry resulting in apoptosis. J Neurochem 104:1177–1189. doi: 10.1111/j.1471-4159.2007.05022.x PubMedCrossRefGoogle Scholar
  18. 18.
    Crews F, Nixon K, Kim D, Joseph J, Shukitt-Hale B, Qin L et al (2006) BHT blocks NF-kappaB activation and ethanol-induced brain damage. Alcohol Clin Exp Res 30:1938–1949. doi: 10.1111/j.1530-0277.2006.00239.x PubMedCrossRefGoogle Scholar
  19. 19.
    Bazan NG (2007) Omega-3 fatty acids, pro-inflammatory signaling and neuroprotection. Curr Opin Clin Nutr Metab Care 10:136–141. doi: 10.1097/MCO.0b013e32802b7030 PubMedCrossRefGoogle Scholar
  20. 20.
    Pawlosky RJ, Salem N Jr (1995) Ethanol exposure causes a decrease in docosahexaenoic acid and an increase in docosapentaenoic acid in feline brains and retinas. Am J Clin Nutr 61:1284–1289PubMedGoogle Scholar
  21. 21.
    Gustavsson L (1990) Brain lipid changes after ethanol exposure. Ups J Med Sci Suppl 48:245–266PubMedGoogle Scholar
  22. 22.
    Pawlosky RJ, Bacher J, Salem N Jr (2001) Ethanol consumption alters electroretinograms and depletes neural tissues of docosahexaenoic acid in rhesus monkeys: nutritional consequences of a low n-3 fatty acid diet. Alcohol Clin Exp Res 25:1758–1765. doi: 10.1111/j.1530-0277.2001.tb02187.x PubMedCrossRefGoogle Scholar
  23. 23.
    Noraberg J, Kristensen BW, Zimmer J (1999) Markers for neuronal degeneration in organotypic slice cultures. Brain Res Brain Res Protoc 3:278–290. doi: 10.1016/S1385-299X(98)00050-6 PubMedCrossRefGoogle Scholar
  24. 24.
    Diekmann S, Nitsch R, Ohm TG (1994) The organotypic entorhinal-hippocampal complex slice culture of adolescent rats. A model to study transcellular changes in a circuit particularly vulnerable in neurodegenerative disorders. J Neural Transm Suppl 44:61–71PubMedGoogle Scholar
  25. 25.
    Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. J Neurosci Methods 37:173–182. doi: 10.1016/0165-0270(91)90128-M PubMedCrossRefGoogle Scholar
  26. 26.
    Jones AW (1999) The drunkest drinking driver in Sweden: blood alcohol concentration 0.545% w/v. J Stud Alcohol 60:400–406PubMedGoogle Scholar
  27. 27.
    Adachi J, Mizoi Y, Fukunaga T, Ogawa Y, Ueno Y, Imamichi H (1991) Degrees of alcohol intoxication in 117 hospitalized cases. J Stud Alcohol 52:448–453PubMedGoogle Scholar
  28. 28.
    Mulholland PJ, Self RL, Harris BR, Little HJ, Littleton JM, Prendergast MA (2005) Corticosterone increases damage and cytosolic calcium accumulation associated with ethanol withdrawal in rat hippocampal slice cultures. Alcohol Clin Exp Res 29:871–881. doi: 10.1097/01.ALC.0000163509.27577.DA PubMedCrossRefGoogle Scholar
  29. 29.
    Zimmer J, Kristensen BW, Jakobsen B, Noraberg J (2000) Excitatory amino acid neurotoxicity and modulation of glutamate receptor expression in organotypic brain slice cultures. Amino Acids 19:7–21. doi: 10.1007/s007260070029 PubMedCrossRefGoogle Scholar
  30. 30.
    Belmadani A, Zou JY, Schipma MJ, Neafsey EJ, Collins MA (2001) Ethanol pre-exposure suppresses HIV-1 glycoprotein 120-induced neuronal degeneration by abrogating endogenous glutamate/Ca2+-mediated neurotoxicity. Neuroscience 104:769–781. doi: 10.1016/S0306-4522(01)00139-7 PubMedCrossRefGoogle Scholar
  31. 31.
    Ushijima H, Nishio O, Klocking R, Perovic S, Muller WE (1995) Exposure to gp120 of HIV-1 induces an increased release of arachidonic acid in rat primary neuronal cell culture followed by NMDA receptor-mediated neurotoxicity. Eur J Neurosci 7:1353–1359. doi: 10.1111/j.1460-9568.1995.tb01126.x PubMedCrossRefGoogle Scholar
  32. 32.
    Dreyer EB, Lipton SA (1995) The coat protein gp120 of HIV-1 inhibits astrocyte uptake of excitatory amino acids via macrophage arachidonic acid. Eur J Neurosci 7:2502–2507. doi: 10.1111/j.1460-9568.1995.tb01048.x PubMedCrossRefGoogle Scholar
  33. 33.
    Brown J III, Achille N, Neafsey EJ, Collins MA (2006) Identification of phospholipase A2 isoforms which contribute to binge alcohol-mediated neurodegeneration. Alcohol 39:112. doi: 10.1016/j.alcohol.2006.09.010 CrossRefGoogle Scholar
  34. 34.
    Crews FT, Collins MA, Dlugos C, Littleton J, Wilkins L, Neafsey EJ et al (2004) Alcohol-induced neurodegeneration: when, where and why? Alcohol Clin Exp Res 28:350–364. doi: 10.1097/01.ALC.0000113416.65546.01 PubMedCrossRefGoogle Scholar
  35. 35.
    Basavappa S, Pedersen SF, Jorgensen NK, Ellory JC, Hoffmann EK (1998) Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J Neurophysiol 79:1441–1449PubMedGoogle Scholar
  36. 36.
    Lehtonen JY, Kinnunen PK (1995) Phospholipase A2 as a mechanosensor. Biophys J 68:1888–1894PubMedCrossRefGoogle Scholar
  37. 37.
    Staub F, Winkler A, Peters J, Kempski O, Baethmann A (1994) Mechanisms of glial swelling by arachidonic acid. Acta Neurochir Suppl (Wien) 60:20–23Google Scholar
  38. 38.
    Staub F, Winkler A, Peters J, Kempski O, Kachel V, Baethmann A (1994) Swelling, acidosis, and irreversible damage of glial cells from exposure to arachidonic acid in vitro. J Cereb Blood Flow Metab 14:1030–1039PubMedGoogle Scholar
  39. 39.
    Farooqui AA, Horrocks LA, Farooqui T (2007) Modulation of inflammation in brain: a matter of fat. J Neurochem 101:577–599. doi: 10.1111/j.1471-4159.2006.04371.x PubMedCrossRefGoogle Scholar
  40. 40.
    Wang X, Zhao X, Mao ZY, Wang XM, Liu ZL (2003) Neuroprotective effect of docosahexaenoic acid on glutamate-induced cytotoxicity in rat hippocampal cultures. Neuroreport 14:2457–2461. doi: 10.1097/00001756-200312190-00033 PubMedCrossRefGoogle Scholar
  41. 41.
    Kishida E, Tajiri M, Masuzawa Y, Kishida E, Tajiri M, Masuzawa Y (2006) Docosahexaenoic acid enrichment can reduce L929 cell necrosis induced by tumor necrosis factor. Biochim Biophys Acta 1761:454–462PubMedGoogle Scholar
  42. 42.
    Wu Y, Tada M, Takahata K, Tomizawa K, Matsui H (2007) Inhibitory effect of polyunsaturated fatty acids on apoptosis induced by etoposide, okadaic acid and AraC in Neuro2a cells. Acta Med Okayama 61:147–152PubMedGoogle Scholar
  43. 43.
    Florent S, Malaplate-Armand C, Youssef I, Kriem B, Koziel V, Escanye MC et al (2006) Docosahexaenoic acid prevents neuronal apoptosis induced by soluble amyloid-beta oligomers. J Neurochem 96:385–395. doi: 10.1111/j.1471-4159.2005.03541.x PubMedCrossRefGoogle Scholar
  44. 44.
    Strokin M, Chechneva O, Reymann KG, Reiser G, Strokin M, Chechneva O et al (2006) Neuroprotection of rat hippocampal slices exposed to oxygen-glucose deprivation by enrichment with docosahexaenoic acid and by inhibition of hydrolysis of docosahexaenoic acid-containing phospholipids by calcium independent phospholipase A2. Neuroscience 140:547–553. doi: 10.1016/j.neuroscience.2006.02.026 PubMedCrossRefGoogle Scholar
  45. 45.
    Cao D, Xue R, Xu J, Liu Z (2005) Effects of docosahexaenoic acid on the survival and neurite outgrowth of rat cortical neurons in primary cultures. J Nutr Biochem 16:538–546. doi: 10.1016/j.jnutbio.2005.02.002 PubMedCrossRefGoogle Scholar
  46. 46.
    Calderon F, Kim HY (2004) Docosahexaenoic acid promotes neurite growth in hippocampal neurons. J Neurochem 90:979–988. doi: 10.1111/j.1471-4159.2004.02520.x PubMedCrossRefGoogle Scholar
  47. 47.
    Young C, Gean PW, Chiou LC, Shen YZ (2000) Docosahexaenoic acid inhibits synaptic transmission and epileptiform activity in the rat hippocampus. Synapse 37:90–94. doi:10.1002/1098-2396(200008)37:2<90::AID-SYN2>3.0.CO;2-ZPubMedCrossRefGoogle Scholar
  48. 48.
    Martinez M, Mougan I (1998) Fatty acid composition of human brain phospholipids during normal development. J Neurochem 71:2528–2533PubMedCrossRefGoogle Scholar
  49. 49.
    Salem N Jr, Kim H-Y, Yergey JA Docosahexaenoic acid in membrane function and metabolism. In: Simopoulos A, Martin R, Kifer R (eds) The health effects of polyunsaturated fatty acids in seafoods. Academic Press, New York, pp 263–317Google Scholar
  50. 50.
    Wilson R, Bell MV (1993) Molecular species composition of glycerophospholipids from white matter of human brain. Lipids 28:13–17. doi: 10.1007/BF02536353 PubMedCrossRefGoogle Scholar
  51. 51.
    Sastry PS (1985) Lipids of nervous tissue: composition and metabolism. Prog Lipid Res 24:69–176. doi: 10.1016/0163-7827(85)90011-6 PubMedCrossRefGoogle Scholar
  52. 52.
    Akbar M, Calderon F, Wen Z, Kim HY (2005) Docosahexaenoic acid: a positive modulator of Akt signaling in neuronal survival. Proc Natl Acad Sci USA 102:10858–10863. doi: 10.1073/pnas.0502903102 PubMedCrossRefGoogle Scholar
  53. 53.
    Martin RE (1998) Docosahexaenoic acid decreases phospholipase A2 activity in the neurites/nerve growth cones of PC12 cells. J Neurosci Res 54:805–813. doi:10.1002/(SICI)1097-4547(19981215)54:6<805::AID-JNR8>3.0.CO;2-4PubMedCrossRefGoogle Scholar
  54. 54.
    Rao JS, Ertley RN, DeMar JC Jr, Rapoport SI, Bazinet RP, Lee HJ (2007) Dietary n-3 PUFA deprivation alters expression of enzymes of the arachidonic and docosahexaenoic acid cascades in rat frontal cortex. Mol Psychiatry 12:151–157. doi: 10.1038/ 4001887 PubMedCrossRefGoogle Scholar
  55. 55.
    Bazan NG Jr (1970) Effects of ischemia and electroconvulsive shock on free fatty acid pool in the brain. Biochim Biophys Acta 218:1–10PubMedGoogle Scholar
  56. 56.
    Strokin M, Sergeeva M, Reiser G (2003) Docosahexaenoic acid and arachidonic acid release in rat brain astrocytes is mediated by two separate isoforms of phospholipase A2 and is differently regulated by cyclic AMP and Ca2+. Br J Pharmacol 139:1014–1022. doi: 10.1038/sj.bjp. 0705326 PubMedCrossRefGoogle Scholar
  57. 57.
    Yavin E, Brand A, Green P (2002) Docosahexaenoic acid abundance in the brain: a biodevice to combat oxidative stress. Nutr Neurosci 5:149–157. doi: 10.1080/10284150290003159 PubMedCrossRefGoogle Scholar
  58. 58.
    Hossain MS, Hashimoto M, Gamoh S, Masumura S (1999) Antioxidative effects of docosahexaenoic acid in the cerebrum versus cerebellum and brainstem of aged hypercholesterolemic rats. J Neurochem 72:1133–1138. doi: 10.1046/j.1471-4159.1999.0721133.x PubMedCrossRefGoogle Scholar
  59. 59.
    Massaro M, Habib A, Lubrano L, Del Turco S, Lazzerini G, Bourcier T et al (2006) The omega-3 fatty acid docosahexaenoate attenuates endothelial cyclooxygenase-2 induction through both NADP(H) oxidase and PKC epsilon inhibition. Proc Natl Acad Sci USA 103:15184–15189. doi: 10.1073/pnas.0510086103 PubMedCrossRefGoogle Scholar
  60. 60.
    Guo M, Stockert L, Akbar M, Kim HY (2007) Neuronal specific increase of phosphatidylserine by docosahexaenoic acid. J Mol Neurosci 33:67–73. doi: 10.1007/s12031-007-0046-z PubMedCrossRefGoogle Scholar
  61. 61.
    Kim HY (2007) Novel metabolism of docosahexaenoic acid in neural cells. J Biol Chem 282:18661–18665. doi: 10.1074/jbc.R700015200 PubMedCrossRefGoogle Scholar
  62. 62.
    Wen Z, Kim HY (2004) Alterations in hippocampal phospholipid profile by prenatal exposure to ethanol. J Neurochem 89:1368–1377. doi: 10.1111/j.1471-4159.2004.02433.x PubMedCrossRefGoogle Scholar
  63. 63.
    Serhan CN, Arita M, Hong S, Gotlinger K (2004) Resolvins, docosatrienes, and neuroprotectins, novel omega-3-derived mediators, and their endogenous aspirin-triggered epimers. Lipids 39:1125–1132. doi: 10.1007/s11745-004-1339-7 PubMedCrossRefGoogle Scholar
  64. 64.
    Bazan NG (2005) Neuroprotectin D1 (NPD1): a DHA-derived mediator that protects brain and retina against cell injury-induced oxidative stress. Brain Pathol 15:159–166PubMedGoogle Scholar
  65. 65.
    Lukiw WJ, Cui JG, Marcheselli VL, Bodker M, Botkjaer A, Gotlinger K et al (2005) A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J Clin Invest 115:2774–2783. doi: 10.1172/JCI25420 PubMedCrossRefGoogle Scholar
  66. 66.
    Wang Q, Sun AY, Simonyi A, Kalogeris TJ, Miller DK, Sun GY et al (2007) Ethanol preconditioning protects against ischemia/reperfusion-induced brain damage: role of NADPH oxidase-derived ROS. Free Radic Biol Med 43:1048–1060. doi: 10.1016/j.freeradbiomed.2007.06.018 PubMedCrossRefGoogle Scholar
  67. 67.
    Bailey SM (2003) A review of the role of reactive oxygen and nitrogen species in alcohol-induced mitochondrial dysfunction. Free Radic Res 37:585–596. doi: 10.1080/1071576031000091711 PubMedCrossRefGoogle Scholar
  68. 68.
    Ramachandran V, Watts LT, Maffi SK, Chen J, Schenker S, Henderson G (2003) Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons. J Neurosci Res 74:577–588. doi: 10.1002/jnr.10767 PubMedCrossRefGoogle Scholar
  69. 69.
    Milne GL, Morrow JD, Picklo MJ Sr (2006) Elevated oxidation of docosahexaenoic acid, 22:6 (n-3), in brain regions of rats undergoing ethanol withdrawal. Neurosci Lett 405:172–174. doi: 10.1016/j.neulet.2006.06.058 PubMedCrossRefGoogle Scholar
  70. 70.
    Kim SY, Breslow RA, Ahn J, Salem N Jr (2007) Alcohol consumption and fatty acid intakes in the 2001–2002 National Health and Nutrition Examination Survey. Alcohol Clin Exp Res 31:1407–1414. doi: 10.1111/j.1530-0277.2007.00442.x PubMedCrossRefGoogle Scholar
  71. 71.
    Salem N Jr, Litman B, Kim HY, Gawrisch K (2001) Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 36:945–959. doi: 10.1007/s11745-001-0805-6 PubMedCrossRefGoogle Scholar
  72. 72.
    Kotani S, Sakaguchi E, Warashina S, Matsukawa N, Ishikura Y, Kiso Y et al (2006) Dietary supplementation of arachidonic and docosahexaenoic acids improves cognitive dysfunction. Neurosci Res 56:159–164. doi: 10.1016/j.neures.2006.06.010 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • James BrownIII
    • 1
  • Nicholas Achille
    • 1
  • Edward J. Neafsey
    • 1
  • Michael A. Collins
    • 1
    Email author
  1. 1.Department of Cell Biology, Neurobiology & AnatomyLoyola University Stritch School of MedicineMaywoodUSA

Personalised recommendations