Neurochemical Research

, Volume 34, Issue 2, pp 215–220 | Cite as

Cytoprotective Effect of Valeriana officinalis Extract on an In Vitro Experimental Model of Parkinson Disease

  • Diêgo Madureira de Oliveria
  • George Barreto
  • Deyse Valverde G. De Andrade
  • Ezequiel Saraceno
  • Laura Aon-Bertolino
  • Francisco Capani
  • Ramon Dos Santos El Bachá
  • Lisandro Diego Giraldez
Original Paper


Parkinson′s disease (PD) is one of the most important neurodegenerative worldwide disorders. The potential cytoprotective effects of aqueous extract of Valeriana officinalis on rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells were demonstrated. The cytotoxicity, cell viability and analysis of cellular morphology were performed by MTT-tetrazole (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and phase contrast microscopy, respectively. Significant changes in the cellular morphology, and condensation of the cell body could be observed when cells were treated with 300 nM rotenone for 48 h. Three different concentrations of Valeriana officinalis extract were used (0.049, 0.098 and 0.195 mg/mL). These extracts brought about an increase of 7.0 ± 1.3%, 14.5 ± 1.3% and 14.5 ± 3.2% in cell viability. Our results indicated that neuroprotector action of the Valeriana officinalis extract provides support for later studies as they help understanding this drug for the development of cytoprotective various therapies in PD.


Parkinson Disease SH-SY5Y cells Valeriana officinalis Cytoprotective Rotenone 


  1. 1.
    Dawson TM, Dawson VL (2003) Molecular pathways of neurodegeneration in Parkinson’s disease. Science 302(5646):819–822PubMedCrossRefGoogle Scholar
  2. 2.
    Spillantini MG, Schmidt ML, Lee VM et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840PubMedCrossRefGoogle Scholar
  3. 3.
    Greenamyre JT, Hastings TG (2004) Biomedicine: Parkinson’s-divergent causes, convergent mechanisms. Science 304:1120–1122PubMedCrossRefGoogle Scholar
  4. 4.
    Cowan WM, Kandel ER (2001) Prospects for neurology and psychiatry. J Am Med Assoc 285:594–600CrossRefGoogle Scholar
  5. 5.
    Eberhardt O, Schulz JB (2003) Apoptotic mechanisms and antiapoptotic therapy in the MPTP model of Parkinson’s disease. Toxicol Lett 4:135–151CrossRefGoogle Scholar
  6. 6.
    Gorell JM, Peterson EL, Rybicki BA et al (2004) Multiple risk factors for Parkinson’s disease. J Neurol Sci 217:169–174PubMedCrossRefGoogle Scholar
  7. 7.
    Sulzer D (2007) Multiple hit hypotheses for dopamine neuron loss in Parkinson’s disease. Trends Neurosci 30(5):244–250PubMedCrossRefGoogle Scholar
  8. 8.
    Gorell JM, Johnson CC, Rybicki BA et al (1998) The risk of Parkinson’s disease with exposure to pesticides, farming, well water, and rural living. Neurology 50:1346–1350PubMedGoogle Scholar
  9. 9.
    Davies KJ (1995) Oxidative stress: the paradox of aerobic life. Biochem Soc Symp 61:1–31PubMedGoogle Scholar
  10. 10.
    Greenamyre JT, Sherer TB, Betarbet R et al (2001) Complex I and Parkinson’s disease. IUBMB Life 52:135–141PubMedCrossRefGoogle Scholar
  11. 11.
    Li N, Ragheb K, Lawler G et al (2002) Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J Biol Chem 278:8516–8525PubMedCrossRefGoogle Scholar
  12. 12.
    Sipos I, Tretter L, Adam-Vizi V (2003) Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 84:112–118PubMedCrossRefGoogle Scholar
  13. 13.
    Seaton TA, Cooper JM, Schapira AH (1997) Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors. Brain Res 777:110–118PubMedCrossRefGoogle Scholar
  14. 14.
    Betarbet R, Sherer TB, Greenamyre JT (2002) Animal models of Parkinson’s disease. Bioessays 24:308–318PubMedCrossRefGoogle Scholar
  15. 15.
    Houghton PJ (1999) The scientific basis for the reputed activity of Valerian. J Pharm Pharmacol 51:505–512PubMedCrossRefGoogle Scholar
  16. 16.
    Piccinelli AL, Arana S, Caceres A et al (2004) New lignans from the roots of Valeriana prionophylla with antioxidative and vasorelaxant activities. J Nat Prod 67:1135–1140PubMedCrossRefGoogle Scholar
  17. 17.
    Carlini EA (2003) Plants and the central nervous system. Pharmacol Biochem Behav 75:501–512PubMedCrossRefGoogle Scholar
  18. 18.
    Hobbs C (1989) Valerian. Herbal Gram 21:19–34Google Scholar
  19. 19.
    Hori H, Ohmori O, Shinkai T et al (2000) Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Neuropsychopharmacology 23:170–177PubMedCrossRefGoogle Scholar
  20. 20.
    Molina-Jimenez MF, Sanchez-Reus MI, Benedi J (2003) Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SY5Y cells: comparison with N-acetylcysteine. Eur J Pharmacol 472:81–87PubMedCrossRefGoogle Scholar
  21. 21.
    Cumming JL, Zhong K (2006) Treatments for behavioural disorders in neurodegenerative diseases: drug development strategies. Nat Rev Drug Discov 5:64–74CrossRefGoogle Scholar
  22. 22.
    Carol AN, Linda AA (1996) Herbal medicines—a guide for health-careprofessionals. The Pharmaceutical Press, LondonGoogle Scholar
  23. 23.
    Marder M, Viola H, Wasowskia C et al (2003) 6-Methylapigenin and hesperidin: new Valeriana flavonoids with activity on the CNS. Pharmacology. Biochem Behav 75:537–545CrossRefGoogle Scholar
  24. 24.
    Malva JO, Santos S, Macedo T (2004) Neuroprotective properties of Valeriana officinalis extracts. Neurotox Res 6:131–140PubMedGoogle Scholar
  25. 25.
    Hansen MB, Nielsen SE, Berg K (1989) Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods 12:203–210CrossRefGoogle Scholar
  26. 26.
    Tan S, Sagara Y, Liu Y et al (1998) The regulation of reactive oxygen species production during programmed cell death. J Cell Biol 141:1423–1432PubMedCrossRefGoogle Scholar
  27. 27.
    Sherer TB, Betarbet R, Greenamyre JT (2002) Environment, mitochondria, and Parkinson’s disease. Neuroscientist 8:192–197PubMedGoogle Scholar
  28. 28.
    Mattson MP (2007) Mitochondrial regulation of neuronal plasticity. Neurochem Res 32:707–715PubMedCrossRefGoogle Scholar
  29. 29.
    Valverde G De Andrade D, Madureira de Oliveria D, Barreto G, Bertolino LA, Saraceno E, Capani F, Giraldez LD (2008) Effects of the extract of Anemopaegma mirandum (Catuaba) on Rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells. Brain Res 1198:188–196PubMedCrossRefGoogle Scholar
  30. 30.
    Chung WG, Miranda CL, Maier CS (2007) Epigallocatechin gallate (EGCG) potentiates the cytotoxicity of rotenone in neuroblastoma SH-SY5Y cells. Brain Res 1176:133–142PubMedCrossRefGoogle Scholar
  31. 31.
    Betarbet R, Sherer TB, MacKenzie G et al (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306PubMedCrossRefGoogle Scholar
  32. 32.
    Sherer TB, Betarbet R, Stout AK et al (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015PubMedGoogle Scholar
  33. 33.
    Brown TP, Rumsby PC, Capleton AC et al (2006) Pesticides and Parkinson’s disease—is there a link? Environ. Health Perspect 114:156–164CrossRefGoogle Scholar
  34. 34.
    Dexter DT, Holley AE, Flitter WD (1994) Increase levels of lipid hydroperoxides in the parkinsonian substantia nigra: an HPLC and ESR study. Mov Disord 9:92–97PubMedCrossRefGoogle Scholar
  35. 35.
    Jenner P, Olanow CW (1998) Understanding cell death in Parkinson′s disease. Ann Neurol 44:72–84Google Scholar
  36. 36.
    Beal MF (2002) Oxidatively modified proteins in aging and disease. Free Radic Biol Med 32:797–803PubMedCrossRefGoogle Scholar
  37. 37.
    Connolly GP (2001) Cell imaging and morphology. Application to studies of inherited purine metabolic disorders. Pharmacol Ther 90:267–281PubMedCrossRefGoogle Scholar
  38. 38.
    Mennini T, Bernasconi P, Bombardelli E et al (1993) In vitro study on the interaction of extracts and pure compounds from Valeriana officinalis roots with GABA, benzodiazepine and barbiturate receptors in rat brain. Fitoterapia 64:291–300Google Scholar
  39. 39.
    Han D, Zhang QG, Yong-Liu et al (2008) Co-activation of GABA receptors inhibits the JNK3 apoptotic pathway via the disassembly of the GluR6-PSD95-MLK3 signaling module in cerebral ischemic-reperfusion. FEBS Lett 582(9):1298–1306PubMedCrossRefGoogle Scholar
  40. 40.
    Newhouse K, Shih-Ling H, Chang SH, Cai B, Wang Y, Xia Z (2004) Rotenone-Induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells. Toxicol Sci 79:137–146PubMedCrossRefGoogle Scholar
  41. 41.
    Chen S, Zhang X, Yang D, Du Y, Li L, Li X, Ming M, Le W (2008) D2/D3 receptor agonist ropinirole protects dopaminergic cell line against rotenone-induced apoptosis through inhibition of caspase- and JNK-dependent pathways. FEBS Lett 582(5):603–610PubMedCrossRefGoogle Scholar
  42. 42.
    Trauner G, Khom S, Baburin I, Benedek B, Hering S, Kopp B (2008) Modulation of GABAA receptors by valerian extracts is related to the content of valerenic acid. Planta Med 74(1):19–24PubMedCrossRefGoogle Scholar
  43. 43.
    Wasowski C, Marder M, Viola H et al (2002) Isolation and identification of 6-methylapigenin, a competitive ligand for the brain GABA(A) receptors, from Valeriana wallichii. Planta Med 68:934–936PubMedCrossRefGoogle Scholar
  44. 44.
    Youdim KA, Spencer JP, Schroeter H et al (2002) Dietary flavonoids as potential neuroprotectants. Biol Chem 383:503–519PubMedCrossRefGoogle Scholar
  45. 45.
    Ahlemeyer B, Krieglstein J (2003) Neuroprotective effects of Ginkgo biloba extract. Cell Mol Life Sci 60:1779–1792PubMedCrossRefGoogle Scholar
  46. 46.
    Dajas F, Rivera F, Blasina F et al (2003) Cell culture protection and in vivo neuroprotective capacity of flavonoids. Neurotoxicity Res 5:425–432Google Scholar
  47. 47.
    Silva BA, Dias ACP, Ferreres F et al (2004) Neuroprotective effect of H. perforatum extracts on beta-amyloid-iduced neurotoxicity. Neurotoxicity Res 6(2):119–130Google Scholar
  48. 48.
    Areias FM, Rego AC, Oliveira CR et al (2001) Antioxidant effect of flavonoids after ascorbate/Fé(2 +)-induced oxidative stress in cultured retinal cells. Biochem Pharmacol 62:111–118PubMedCrossRefGoogle Scholar
  49. 49.
    Prior RL (2003) Fruits and vegetables in the prevention of cellular oxidative damage. Am J Clin Nutr 78(Suppl. 3):570S–578SPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Diêgo Madureira de Oliveria
    • 1
  • George Barreto
    • 1
  • Deyse Valverde G. De Andrade
    • 1
  • Ezequiel Saraceno
    • 3
  • Laura Aon-Bertolino
    • 3
  • Francisco Capani
    • 3
  • Ramon Dos Santos El Bachá
    • 1
  • Lisandro Diego Giraldez
    • 1
    • 2
  1. 1.Laboratório de Neuroquímica e Biologia CelularUniversidade Federal da Bahia (UFBA)SalvadorBrazil
  2. 2.SalvadorBrazil
  3. 3.Departamento de Bioquímica HumanaFacultad de Medicina, Universidad de Buenos Aires (UBA)Buenos AiresArgentina

Personalised recommendations