Neurochemical Research

, Volume 33, Issue 10, pp 1990–2007 | Cite as

Neurosteroid Biosynthesis Regulates Sexually Dimorphic Fear and Aggressive Behavior in Mice

  • Graziano Pinna
  • Roberto Carlos Agis-Balboa
  • Fabio Pibiri
  • Marianela Nelson
  • Alessandro Guidotti
  • Erminio Costa
Review Article

Abstract

The neurosteroid allopregnanolone is a potent positive allosteric modulator of GABA action at GABAA receptors. Allopregnanolone is synthesized in the brain from progesterone by the sequential action of 5α-reductase type I (5α-RI) and 3α-hydroxysteroid dehydrogenase (3α-HSD). 5α-RI and 3α-HSD are co-expressed in cortical, hippocampal, and olfactory bulb glutamatergic neurons and in output neurons of the amygdala, thalamus, cerebellum, and striatum. Neither 5α-RI nor 3α-HSD mRNAs is expressed in glial cells or in cortical or hippocampal GABAergic interneurons. It is likely that allopregnanolone synthesized in principal output neurons locally modulates GABAA receptor function by reaching GABAA receptor intracellular sites through lateral membrane diffusion.

This review will focus on the behavioral effects of allopregnanolone on mouse models that are related to a sexually dimorphic regulation of brain allopregnanolone biosynthesis. Animal models of psychiatric disorders, including socially isolated male mice or mice that receive a long-term treatment with anabolic androgenic steroids (AAS), show abnormal behaviors such as altered fear responses and aggression. In these animal models, the cortico-limbic mRNA expression of 5α-RI is regulated in a sexually dimorphic manner. Hence, in selected glutamatergic pyramidal neurons of the cortex, CA3, and basolateral amygdala and in granular cells of the dentate gyrus, mRNA expression of 5α-RI is decreased, which results in a downregulation of allopregnanolone content. In contrast, 5α-RI mRNA expression fails to change in the striatum medium spiny neurons and in the reticular thalamic nucleus neurons, which are GABAergic.

By manipulating allopregnanolone levels in glutamatergic cortico-limbic neurons in opposite directions to improve [using the potent selective brain steroidogenic stimulant (SBSS) S-norfluoxetine] or induce (using the potent 5α-RI inhibitor SKF 105,111) behavioral deficits, respectively, we have established the fundamental role of cortico-limbic allopregnanolone levels in the sexually dimorphic regulation of aggression and fear. By selectively targeting allopregnanolone downregulation in glutamatergic cortico-limbic neurons, i.e., by improving the response of GABAA receptors to GABA, new therapeutics would offer appropriate and safe management of psychiatric conditions, including impulsive aggression, irritability, irrational fear, anxiety, posttraumatic stress disorders, and depression.

Keywords

Allopregnanolone 5α-reductase type I Anabolic androgenic steroids (AAS) Selective brain steroidogenic stimulants (SBSSs) Social isolation Posttraumatic stress disorders (PTSD) 

Notes

Acknowledgment

This study was supported by a Campus Research Board Award 2-611185 (to GP). Supported by Regione Autonoma della Sardegna, Italy, "Master and Back" (to F.P.).

References

  1. 1.
    Tardiff K (2000) Epidemiology of violence and mental illness. Epidemiol Psychiatr Soc 9:227–233Google Scholar
  2. 2.
    Morris JA, Jordan CL, Breedlove SM (2004) Sexual differentiation of the vertebrate nervous system. Nature Neurosci 7:1034–1039PubMedCrossRefGoogle Scholar
  3. 3.
    Shah NM, Breedlove M (2007) Behavioural neurobiology females can also be from Mars. Nature 448:999–1000PubMedCrossRefGoogle Scholar
  4. 4.
    Hershberger SL, Segal NL (2004) The cognitive, behavioral, and personality profiles of a male monozygotic triplet set discordant for sexual orientation. Arch Sex Behav 33:497–514PubMedCrossRefGoogle Scholar
  5. 5.
    Cohen-Bendahan CCC, Buitelaar JK, van Goozen SHM, Cohen-Kettenis PT (2004) Prenatal exposure to testosterone and functional cerebral lateralization: a study in same-sex and opposite-sex twin girls. Psychoneuroendrocrinology 29:911–916CrossRefGoogle Scholar
  6. 6.
    Cohen-Bendahan CCC, Buitelaar JK, van Goozen SHM, Orlebeke JF, Cohen-Kettenis PT (2005) Is there an effect of prenatal testosterone on aggression and other behavioral traits? A study comparing same-sex and opposite-sex twin girls. Horm Behav 47:230–237PubMedCrossRefGoogle Scholar
  7. 7.
    Penatti CAA, Porter DM, Jones BL, Henderson LP (2005) Sex-specific effects of chronic anabolic androgenic steroid treatment on GABAA receptor expression and function in adolescent mice. Neuroscience 135:533–543PubMedCrossRefGoogle Scholar
  8. 8.
    Carlson PJ, Singh JB, Zarate CA Jr, Drevets WC, Manji HK (2006) Neural circuitry and neuroplasticity in mood disorders: insights for novel therapeutic targets. NeuroRx: J Am Soc Exp NeuroTher 3:22–41Google Scholar
  9. 9.
    Nelson RJ, Trainor BC (2007) Neural mechanisms of aggression. Nature Rev Neurosci 8:536–546CrossRefGoogle Scholar
  10. 10.
    Mandiyan VS, Coats JK, Shah NM (2005) Deficits in sexual and aggressive behaviors in Cnga2 mutant mice. Nat Neurosci 8:1660–1662PubMedCrossRefGoogle Scholar
  11. 11.
    Meyer-Lindenberg A, Weinberger DR (2006) Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nature 7:818–827Google Scholar
  12. 12.
    Meyer-Lindenberg A, Buckholtz JW, Kolachana B, Hariri AR, Pezawas L, Blasi G, Wabnitz A, Honea R, Verchinski B, Callicott JH, Egan M, Mattay V, Weinberger DR (2006) Neural mechanisms of genetic risk for impulsivity and violence in humans. Proc Natl Acad Sci USA 103:6269–6274PubMedCrossRefGoogle Scholar
  13. 13.
    Price JL (2007) Definition of the orbital cortex in relation to specific connections with limbic and visceral structures and other cortical regions. Ann NY Acad Sci 121:54–71 CrossRefGoogle Scholar
  14. 14.
    Price JL, Carmichael ST, Drevets WC (1996) Networks related to the orbital and medial prefrontal cortex; a substrate for emotional behavior? Prog Brain Res 107:523–536PubMedCrossRefGoogle Scholar
  15. 15.
    Drevets W (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11:240–249PubMedCrossRefGoogle Scholar
  16. 16.
    Ressler KJ, Mayberg HS (2007) Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci 10:1116–1124PubMedCrossRefGoogle Scholar
  17. 17.
    Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48:813–829PubMedCrossRefGoogle Scholar
  18. 18.
    Agis-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci USA 103:14602–14607PubMedCrossRefGoogle Scholar
  19. 19.
    Pinna G, Dong E, Matsumoto K, Costa E, Guidotti A (2003) In socially isolated mice, the reversal of brain allopregnanolone down-regulation mediates the anti-aggressive action of fluoxetine. Proc Natl Acad Sci USA 100:2035–2040PubMedCrossRefGoogle Scholar
  20. 20.
    Pinna G, Costa E, Guidotti A (2004) Fluoxetine and norfluoxetine stereospecifically facilitate pentobarbital sedation by increasing neurosteroids. Proc Natl Acad Sci USA 101:6222–6225PubMedCrossRefGoogle Scholar
  21. 21.
    Pinna G, Costa E, Guidotti A (2006) Fluoxetine and norfluoxetine stereospecifically and selectively increase brain neurosteroid content at doses that are inactive on 5-HT reuptake. Psychopharmacology (Berl) 186:362–372CrossRefGoogle Scholar
  22. 22.
    Pibiri F, Nelson M, Costa E, Guidotti A, Pinna G (2008) Decreased corticolimbic allopregnanolone expression during social isolation enhances contextual fear: a model relevant for posttraumatic stress disorder. Proc Natl Acad Sci USA 105:5567–5572PubMedCrossRefGoogle Scholar
  23. 23.
    Baulieu EE (1981) Steroid hormones in the brain: several mechanisms. In: Fuxe K, Gustafson JA, Wettenberg L (eds) Steroid hormone regulation of the brain. Pergamon, Elmsford, pp 3–14Google Scholar
  24. 24.
    Baulieu EE, Robel P (1990) Neurosteroids: a new brain function? J Steroid Biochem Mol Biol Rev 37:395–403CrossRefGoogle Scholar
  25. 25.
    Pinna G, Uzunova V, Matsumoto K, Puia G, Mienville J-M, Costa E, Guidotti A (2000) Brain allopregnanolone regulates the potency of the GABAA receptor agonist muscimol. Neuropharmacology 39:440–448PubMedCrossRefGoogle Scholar
  26. 26.
    Puia G, Mienville J-M, Matsumoto K, Takahata H, Watanabe H, Costa E, Guidotti A (2003) On the putative physiological role of allopregnanolone on GABAA receptor function. Neuropharmacology 44:49–55PubMedCrossRefGoogle Scholar
  27. 27.
    Belelli D, Lambert JJ (2005) Neurosteroids: endogenous regulators of the GABAA receptor. Nat Rev Neurosci 6:565–575PubMedCrossRefGoogle Scholar
  28. 28.
    Dong E, Matsumoto K, Uzunova V, Sugaya I, Costa E, Guidotti A (2001) Brain 5α-dihydroprogesterone and allopregnanolone synthesis in a mouse model of protracted social isolation. Proc Natl Acad Sci USA 98:2849–2854PubMedCrossRefGoogle Scholar
  29. 29.
    Guidotti A, Dong E, Matsumoto K, Pinna G, Rasmusson AM, Costa E (2001) The socially-isolated mouse: a model to study the putative role of allopregnanolone and 5α-dihydroprogesterone in psychiatric disorders. Brain Res Rev 37:110–115PubMedCrossRefGoogle Scholar
  30. 30.
    Puia G, Santi MR, Vicini S, Pritchett DB, Purdy RH, Paul SM, Seeburg PH, Costa E (1990) Neurosteroids act on recombinant human GABAA receptors. Neuron 4:759–765PubMedCrossRefGoogle Scholar
  31. 31.
    Herd MB, Belelli D, Lambert JJ (2007) Neurosteroid modulation of synaptic and extrasynaptic GABAA receptors. Pharmacol Ther 116:20–34PubMedCrossRefGoogle Scholar
  32. 32.
    Cheney DL, Uzunov D, Costa E, Guidotti A (1995) Gas chromatographic-mass fragmentographic quantitation of 3α-hydroxy-5α-pregnan-20-one (allopregnanolone) and its precursors in blood and brain of adrenalectomized and castrated rats. J Neurosci 15:4641–4650PubMedGoogle Scholar
  33. 33.
    Uzunov DP, Cooper TB, Costa E, Guidotti A (1996) Fluoxetine elicited changes in brain neurosteroid content measured by negative ion mass fragmentography. Proc Natl Acad Sci USA 93:12599–12604PubMedCrossRefGoogle Scholar
  34. 34.
    Matsumoto K, Pinna G, Puia G, Guidotti A, Costa E (2005) Social isolation stress-induced aggression in mice: a model to study the pharmacology of neurosteroidogenesis. Stress 8:85–93PubMedCrossRefGoogle Scholar
  35. 35.
    Pinault D (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res Brain Res Rev 46:1–31PubMedCrossRefGoogle Scholar
  36. 36.
    Akk G, Shu HJ, Wang C, Steinbach JH, Zorumski CF, Covey DF, Mennerick S (2005) Neurosteroid access to the GABAA receptor. J Neurosci 25:11605–11613PubMedCrossRefGoogle Scholar
  37. 37.
    Li P, Shu HJ, Wang C, Mennerick S, Zorumski CF, Covey DF, Steinbach JH, Akk G (2007) Neurosteroid migration to intracellular compartments reduces steroid concentration in the membrane and diminishes GABAA receptor potentiation. J Physiol 584:789–800PubMedCrossRefGoogle Scholar
  38. 38.
    Matsumoto K, Uzunova V, Pinna G, Taki K, Uzunov DP, Watanabe H, Mienvielle J-M, Guidotti A, Costa E (1999) Permissive role of brain allopregnanolone content in the regulation of pentobarbital-induced righting reflex loss. Neuropharmacology 38:955–963PubMedCrossRefGoogle Scholar
  39. 39.
    Rasmusson AM, Pinna G, Paliwal P, Weisman D, Gottshalk C, Charney D, Krystal J, Guidotti A (2006) Decreased cerebrospinal fluid allopregnanolone levels in women with posttraumatic stress disorder. Biol Psychiatry 60:704–713PubMedCrossRefGoogle Scholar
  40. 40.
    Uzunova V, Sheline Y, Davis JM, Rasmusson A, Uzunov DP, Costa E, Guidotti A (1998) Increase in the cerebrospinal fluid content of neurosteroids in patients with unipolar major depression who are receiving fluoxetine or fluvoxamine. Proc Natl Acad Sci USA 95:3239–3244PubMedCrossRefGoogle Scholar
  41. 41.
    Agis-Balboa RC, Pinna G, Kadriu B, Costa E, Guidotti A (2007) Down-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice. Proc Natl Acad Sci USA 104:18736–18741PubMedCrossRefGoogle Scholar
  42. 42.
    Uzunova V, Sampson L, Uzunov DP (2006) Relevance of endogenous 3α-reduced neurosteroids to depression and antidepressant action. Psychopharmacology (Berl) 186:351–361CrossRefGoogle Scholar
  43. 43.
    Pinna G, Agis-Balboa RC, Zhubi A, Matsumoto K, Grayson DR, Costa E, Guidotti A (2006) Imidazenil and diazepam increase locomotor activity in mice exposed to protracted social isolation. Proc Natl Acad Sci USA 103:4275–4280PubMedCrossRefGoogle Scholar
  44. 44.
    Griffin LD, Mellon SH (1999) Selective serotonin reuptake inhibitors directly alter activity of neurosteroidogenic enzymes. Proc Natl Acad Sci USA 96:13512–13517PubMedCrossRefGoogle Scholar
  45. 45.
    Dubrovsky BO (2005) Steroids, neurosctive steroids and neurosteroids in psychopathology. Progr NeuroPsychopharmacol Biol Psychiatry 29:169–192CrossRefGoogle Scholar
  46. 46.
    Barbaccia ML (2004) Neurosteroidogenesis: relevance to neurosteroid actions in brain and modulation by psychotropic drugs. Crit Rev Neurobiol 16:67–74PubMedCrossRefGoogle Scholar
  47. 47.
    van Broekhoven F, Verkes RJ (2003) Neurosteroids in depression: a review. Psychopharmacology (Berl) 165:97–110Google Scholar
  48. 48.
    Longone P, Rupprecht R, Manieri GA, Bernardi G, Romeo E, Pasini A (2008) The complex roles of neurosteroids in dpression and anxiety disoerders. Neurochem Int 52:596–601PubMedCrossRefGoogle Scholar
  49. 49.
    Girdler SS, Klatzkin R (2007) Neurosteroids in the context of stress: Implications for depressive disorders. Pharmacol Ther 1:125–139CrossRefGoogle Scholar
  50. 50.
    Romeo E, Ströhle A, Spalletta G, di Michele F, Hermann B, Holsboer F, Pasini A, Rupprecht R (1998) Effects of antidepressant treatment on neuroactive steroids in major depression. Am J Psychiatry 155:910–913PubMedGoogle Scholar
  51. 51.
    Pinna G, Agis-Balboa RC, Doueiri MS, Guidotti A, Costa E (2004) Brain neurosteroids in gender-related aggression induced by social isolation. Crit Rev Neurobiol 16:75–82PubMedCrossRefGoogle Scholar
  52. 52.
    Pinna G, Costa E, Guidotti A (2005) Changes in brain testosterone and allopregnanolone biosynthesis elicit aggressive behavior. Proc Natl Acad Sci USA 102:2135–2140PubMedCrossRefGoogle Scholar
  53. 53.
    Pibiri F, Nelson M, Carboni G, Pinna G (2006) Neurosteroids regulate mouse aggression induced by anabolic androgenic steroids. NeuroReport 17:1537–1541PubMedCrossRefGoogle Scholar
  54. 54.
    Pearson H (2004) Hormone therapy: a dangerous elixir? Nature 431:500–501PubMedCrossRefGoogle Scholar
  55. 55.
    Pagonis TA, Angelopoulos NV, Koukoulis GN, Hadjichristodoulou CS (2006) Psychiatric side effects induced by supraphysiological doses of combinations of anabolic steroids correlate to the severity of abuse. Eur Psychiatry 21:551–562PubMedCrossRefGoogle Scholar
  56. 56.
    Snyder PJ, Brunton LL, Lazo JS, Parker KL (2005) Androgens. In: The pharmacological basis of therapeutics, 11th edn. Chap. 58, pp 1523–1586Google Scholar
  57. 57.
    National Institute of Drug Abuse (2006) NIDA research report series: steroid abuse and addiction. National Clearinghouse on Alcohol and Drug Information, Rockville. (http://165.112.78.61/ResearchReports/Steroids/Anabolicsteroids.html)
  58. 58.
    National Institute of Drug Abuse (2006) NIDA research report series: anabolic steroid abuse. National Clearinghouse on Alcohol and Drug Information, Rockville. (http://www.nida.nih.gov/ResearchReports/Steroids/anabolicsteroids3.html)
  59. 59.
    McGinnis MY, Lumia AR, Breuer ME, Possidente B (2002) Physical provocation potentiates aggression in male rats receiving anabolic androgenic steroids. Horm Behav 41:101–110PubMedCrossRefGoogle Scholar
  60. 60.
    Pope HG Jr, Brower KJ (2000) In: Sadock BJ, Sadock BA (eds) Comprehensive Textbook of Psychiatry, 7th edn. Lippincott William & Wilkins, Philadelphia, pp 1085–1095Google Scholar
  61. 61.
    Pope HG, Katz DL (1990) Homicide and near-homicide by anabolic steroid users. J Clin Psychiatry 51:28–31PubMedGoogle Scholar
  62. 62.
    Thiblin I, Lindquist O, Rajs J (2000) Cause and manner of death among users of anabolic androgenic steroids. J Forensic Sci 45:16–23PubMedGoogle Scholar
  63. 63.
    Peterson A, Garle M, Holmgren P, Druid H, Krantz P, Thiblin I (2006) Toxicological findings and manner of death in autopsied users of anabolic androgenic steroids. Drug Alcohol Depend 81:241–249CrossRefGoogle Scholar
  64. 64.
    Eisenberg E, Gordan GS (1950) The levator ani muscle of the rat as an index of myotrophic activity of steroidal hormones. J Pharmacol Exp Ther 99:38–44PubMedGoogle Scholar
  65. 65.
    Clark AS, Henderson LP (2003) Behavioral and physiological responses to anabolic-androgenic steroids. Neurosci Biobehav Rev 27:413–436PubMedCrossRefGoogle Scholar
  66. 66.
    Clark AS, Costine BA, Jones BL, Kelton-Rehkopf MC, Meerts SH, Nutbrown-Greene LL, Penatti CA, Porter DM, Yang P, Henderson LP (2006) Sex- and age-specific effects of anabolic androgenic steroids on reproductive behaviors and on GABAergic transmission in neuroendocrine control regions. Brain Res 1126:122–138PubMedCrossRefGoogle Scholar
  67. 67.
    Henderson LP, Penatti CA, Jones BL, Yang P, Clark AS (2006) Anabolic androgenic steroids and forebrain GABAergic transmission. Neuroscience 138:793–799PubMedCrossRefGoogle Scholar
  68. 68.
    Matsumoto K, Puia G, Dong E, Pinna G (2007) GABAA receptor neurotransmission dysfunction in a mouse model of social isolation-induced stress: possible insights into a non-serotonergic mechanism of action of SSRIs in mood and anxiety disorders. Stress 10:3–12PubMedCrossRefGoogle Scholar
  69. 69.
    McIntyre KL, Porter DM, Henderson LP (2002) Anabolic androgenic steroids induce age-, sex-, and dose-dependent changes in GABAA receptor subunit mRNAs in the mouse forebrain. Neuropharmacology 43:634–645PubMedCrossRefGoogle Scholar
  70. 70.
    Pinna G, Agis-Balboa RC, Nelson M, Pibiri F (2007) Anabolic androgenic steroids (AAS) elicit male mouse aggression by selectively decreasing cortico-limbic allopregnanolone (allopregnanolone) content. Society for Neuroscience abstract 729.11/OO24Google Scholar
  71. 71.
    Holmes A, Murphy DL, Crawley JN (2002) Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology 161:160–167PubMedCrossRefGoogle Scholar
  72. 72.
    Blanchard RJ, Blanchard DC (1969) Passive and active reactions to fear-eliciting stimuli. J Comp Physiol Psychol 68:129–135PubMedCrossRefGoogle Scholar
  73. 73.
    Phillips RG, LeDoux JE (1992) Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci 106:274–285PubMedCrossRefGoogle Scholar
  74. 74.
    Corcoran KA, Desmond TJ, Frey KA, Maren S (2005) Hippocampal inactivation disrupts the acquisition and contextual encoding of fear extinction. J Neurosci 25:8978–8987PubMedCrossRefGoogle Scholar
  75. 75.
    Barad M, Gean PW, Lutz B (2006) The role of the amygdala in the extinction of conditioned fear. Biol Psychiatry 60:322–328PubMedCrossRefGoogle Scholar
  76. 76.
    Muller J, Corodimas KP, Fridel Z, LeDoux JE (1997) Functional inactivation of the lateral and basal nuclei of the amygdala by muscimol infusion prevents fear conditioning to an explicit conditioned stimulus and to contextual stimuli. Behav Neurosci 111:683–691PubMedCrossRefGoogle Scholar
  77. 77.
    Goldstein LE, Rasmusson AM, Bunney BS, Roth RH (1996) Role of the amygdala in the coordination of behavioral, neuroendocrine, and prefrontal cortical monoamine responses to psychological stress in the rat. J Neurosci 16:4787–4798PubMedGoogle Scholar
  78. 78.
    Helmstetter FJ, Bellgowan PS (1994) Effects of muscimol applied to the basolateral amygdala on acquisition and expression of contextual fear conditioning in rats. Behav Neurosci 108:1005–1009PubMedCrossRefGoogle Scholar
  79. 79.
    Sotres-Bayon F, Cain CK, LeDoux JE (2006) Brain mechanisms of fear extinction: historical perspectives on the contribution of prefrontal cortex. Biol Psychiatry 60:329–336PubMedCrossRefGoogle Scholar
  80. 80.
    Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150PubMedCrossRefGoogle Scholar
  81. 81.
    Hermans D, Craske MG, Mineka S, Lovibond PF (2006) Extinction in human fear conditioning. Biol Psychiatry 60:361–368PubMedCrossRefGoogle Scholar
  82. 82.
    Bouton ME, Westbrook RF, Corcoran KA, Maren S (2006) Contextual and temporal modulation of extinction: behavioral and biological mechanisms. Biol Psychiatry 60:352–360PubMedCrossRefGoogle Scholar
  83. 83.
    Li S, Murakami Y, Wang M, Maeda K, Matsumoto K (2006) The effects of chronic valproate and diazepam in a mouse model of posttraumatic stress disorder. Pharmacol Biochem Behavior 85:324–331CrossRefGoogle Scholar
  84. 84.
    Canteras NS, Swanson LW (1992) Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. J Comp Neurol 324:180–194PubMedCrossRefGoogle Scholar
  85. 85.
    Price JL (2003) Comparative aspects of amygdala connectivity. Ann NY Acad Sci 958:50–58Google Scholar
  86. 86.
    Pitkänen A, Savander M, Nurminen N, Ylinen A (2003) Intrinsic Synaptic Circuitry of the Amygdala. Ann NY Acad Sci 985:34–49PubMedCrossRefGoogle Scholar
  87. 87.
    Sotres-Bayon F, Bush DE, LeDoux JE (2004) Emotional perseveration: an update on prefrontal-amygdala interactions in fear extinction. Learning Memory 11:525–535PubMedCrossRefGoogle Scholar
  88. 88.
    Morgan MA, Romanski LM, LeDoux JE (1993) Extinction of emotional learning: contribution of medial prefrontal cortex. Neurosci Lett 163:109–113PubMedCrossRefGoogle Scholar
  89. 89.
    Martinez RC, Ribeiro de Oliveira A, Brandão ML (2007) Serotonergic mechanisms in the basolateral amygdala differentially regulate the conditioned and unconditioned fear organized in the periaqueductal gray. Eur Neuropsychopharmacol 17:717–724PubMedCrossRefGoogle Scholar
  90. 90.
    LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184PubMedCrossRefGoogle Scholar
  91. 91.
    Cahill L, Weinberger NM, Roozendaal B, McGaugh JL (1999) Is the amygdala a locus of “conditioned fear”? Some questions and caveats. Neuron 23:227–228PubMedCrossRefGoogle Scholar
  92. 92.
    Matsumoto K, Nomura H, Murakami Y, Taki K, Takahata H, Watanabe H (2003) Long-term social isolation enhances picrotoxin seizure susceptibility in mice: up-regulatory role of endogenous brain allopregnanolone in GABAergic systems. Pharm Biochem Behav 75:831–835CrossRefGoogle Scholar
  93. 93.
    Rosselli CE (1998) The effect of anabolic-androgenic steroids on aromatase activity and androgen receptor binding in the rat preoptic area. Brain Res 792:271–276CrossRefGoogle Scholar
  94. 94.
    Orlando R, Caruso A, Molinaro G, Motolese M, Matrisciano F, Togna G, Melchiorri D, Nicoletti F, Bruno V (2007) Nanomolar concentrations of anabolic-androgenic steroids amplify excitotoxic neuronal death in mixed mouse cortical cultures. Brain Res 1165:21–29PubMedCrossRefGoogle Scholar
  95. 95.
    Stürenburg HJ, Fries U, Kunze K (1997) Glucocorticoids and anabolic/androgenic steroids inhibit the synthesis of GABAergic steroids in rat cortex. Neuropsychobiology 35:143–146PubMedCrossRefGoogle Scholar
  96. 96.
    Torres JM, Ortega E (2003) Differential regulation of steroid 5α-reductase isozymes expression by androgens in the adult rat brain. FASEB J 11:1428–1433CrossRefGoogle Scholar
  97. 97.
    Steers WD (2001) 5α-reductase activity in the prostate. Urology 58:17–24PubMedCrossRefGoogle Scholar
  98. 98.
    Torres JM, Ortega E (2003) Precise quantization of 5α-reductase type 1 mRNA by RT-PCR in rat liver and its positive regulation by testosterone and dihydrotestosterone. Biochem Biophys Res Commun 308:469–473PubMedCrossRefGoogle Scholar
  99. 99.
    Torres JM, Ruiz E, Orgega E (2003) Development of a quantitative RT-PCR method to study 5alpha-reductase mRNA isozymes in rat prostate in different androgen status. Prostate 6:74–79CrossRefGoogle Scholar
  100. 100.
    Sommerville EM, Tarttelin MF (1983) Plasma testosterone levels in adult and neonatal female rats bearing testosterone propionate-filled silicone elastomer capsules for varying periods of time. J Endocrinol 98:365–371PubMedGoogle Scholar
  101. 101.
    Russell DW, Wilson JD (1994) Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem 63:25–61PubMedGoogle Scholar
  102. 102.
    Faigenbaum AD, Zaichkowshy LD, Gardner DE, Micheli LJ (1998) Anabolic steroid use by male and female middle school students. Pediatrics 101:1–6CrossRefGoogle Scholar
  103. 103.
    Clerico A, Ferdeghini M, Palombo C, Leoncini R, Del Chicca MG, Sardano G, Mariani G (1981) Effect of anabolic treatment on the serum levels of gonadotropins, testosterone, prolactin, thyroid hormones and myoglobin of male athletes under physical training. J Nucl Med Allied Sci 25:79–88PubMedGoogle Scholar
  104. 104.
    Alén M, Rahkila P, Reinila M, Vihko R (1987) Androgenic-anabolic steroid effects on serum thyroid, pituitary and steroid hormones in athletes. Am J Sports Med 15:357–361PubMedCrossRefGoogle Scholar
  105. 105.
    Alén M, Reinila M, Vihko R (1985) Response of serum hormones to androgen administration in power athletes. Med Sci Sports Exerc 17:354–359PubMedGoogle Scholar
  106. 106.
    Deyssig R, Weissel M (1993) Ingestion of androgenic–anabolic steroids induces mild thyroidal impairment in male body builders. J Clin Endocrinol Metab 76:1069–1071PubMedCrossRefGoogle Scholar
  107. 107.
    Daly RC, Su TP, Schmidt PJ, Pagliaro M, Pickar D, Rubinow DR (2003) Neuroendocrine and behavioral effects of high-dose anabolic steroid administration in male normal volunteers. Psychoneuroendocrinology 28:317–331PubMedCrossRefGoogle Scholar
  108. 108.
    Small M, Beastall GH, Semple CG, Cowan RA, Forbes CD (1984) Alteration of hormone levels in normal males given the anabolic steroid stanozolol. Clin Endocrinol 21:49–55CrossRefGoogle Scholar
  109. 109.
    Ruokonen A, Alén M, Bolton N, Vihko R (1985) Response of serum testosterone and its precursor steroids, SHBG and CBG to anabolic steroid and testosterone self-administration in man. J Steroid Biochem 23:33–38Google Scholar
  110. 110.
    Fortunato RS, Marassi MP, Chaves EA, Nascimento JH, Rosenthal D, Carvalho DP (2006) Chronic administration of anabolic androgenic steroid alters murine thyroid function. Med Sci Sports Exerc 38:256–261PubMedCrossRefGoogle Scholar
  111. 111.
    Manna PR, Tena-Sempere M, Huhtaniemi IT (1999) Molecular mechanisms of thyroid hormone-stimulated steroidogenesis in mouse leydig tumor cells. J Biol Chem 274:5909–5918PubMedCrossRefGoogle Scholar
  112. 112.
    Gupta P, Kar A (1997) Role of testosterone in ameliorating the cadmium induced inhibition of thyroid function in adult male mouse. Bull Environ Contam Toxicol 58:422–428PubMedCrossRefGoogle Scholar
  113. 113.
    Arlotto MP, Parkinson A (1989) Identification of cytochrome P450a (P450IIA1) as the principal testosterone 7α-hydroxylase in rat liver microsomes and its regulation by thyroid hormones. Arch Biochem Biophys 270:458–471PubMedCrossRefGoogle Scholar
  114. 114.
    Pinna G, Hiedra L, Prengel H, Broedel O, Eravci M, Meinhold H, Baumgartner A (1999) Extraction and quantification of thyroid hormones in selected regions and subcellular fractions of the rat brain. Brain Res Brain Res Protocols 4:19–28CrossRefGoogle Scholar
  115. 115.
    Pinna G, Brödel O, Visser T, Jeitner A, Grau H, Eravci M, Meinhold H, Baumgartner A (2002) Concentrations of seven iodothyronine metabolites in brain regions and the liver of the adult rat. Endocrinology 143:1789–1800PubMedCrossRefGoogle Scholar
  116. 116.
    Campos-Barros A, Hoell T, Musa A, Sampaolo S, Stoltenburg G, Pinna G, Eravci M, Meinhold H, Baumgartner A (1996) Phenolic and tyrosyl ring iodothyronine deiodination and thyroid hormone concentrations in the human central nervous system. J Clin Endocrinol Metab 81:2179–2185PubMedCrossRefGoogle Scholar
  117. 117.
    Pinna G, Meinhold H, Hiedra L, Thoma R, Hoell T, Gräf KJ, Stoltenburg-Didinger G, Eravci M, Prengel H, Brödel O, Finke R, Baumgartner A (1997) Elevated 3, 5-diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors. J Clin Endocrinol Metab 82:1535–1542PubMedCrossRefGoogle Scholar
  118. 118.
    Pinna G, Hiedra L, Meinhold H, Eravci M, Prengel H, Brödel O, Gräf KJ, Stoltenburg-Didinger G, Bauer M, Baumgartner A (1998) 3, 3′-Diiodothyronine concentrations in the sera of patients with nonthyroidal illnesses and brain tumors and of healthy subjects during acute stress. J Clin Endocrinol Metab 83:3071–3077PubMedCrossRefGoogle Scholar
  119. 119.
    van Doorn J, van der Heide D, Roelfsema F (1984) The contribution of local thyroxine monodeiodination to intracellular 3, 5, 3’-triiodothyronine in several tissues of hyperthyroid rats at isotopic equilibrium. Endocrinology 115:174–182PubMedCrossRefGoogle Scholar
  120. 120.
    Bauer M, London ED, Rasgon N, Berman SM, Frye MA, Altshuler LL, Mandelkern MA, Bramen J, Voytek B, Woods R, Mazziotta JC, Whybrow PC (2007) Supraphysiological doses of levothyroxine alter regional cerebral metabolism and improve mood in bipolar depression. Mol Psychiatry 10:456–469 CrossRefGoogle Scholar
  121. 121.
    Pinna G, Broedel O, Eravci M, Stoltenburg-Didinger G, Plueckhan H, Fuxius S, Meinhold H, Baumgartner A (2003) Thyroid hormones in the rat amygdala as common targets for antidepressant drugs, mood stabilizers, and sleep deprivation. Biol Psychiatry 54:1049–1059PubMedCrossRefGoogle Scholar
  122. 122.
    Baumgartner A (2000) Thyroxine and the treatment of affective disorders: an overview of the results of basic and clinical research. Int J neuropsychopharmachol 3:149–165CrossRefGoogle Scholar
  123. 123.
    Chang WC, Chen BK (2005) Transcription factor Sp1 functions as an anchor protein in gene transcription of human 12(S)-lipoxygenase. Biochem Biophys Res Commun 338:117–121PubMedCrossRefGoogle Scholar
  124. 124.
    Chen Y, Kundakovic M, Agis-Balboa RC, Pinna G, Grayson DR (2007) Induction of the reelin promoter by retinoic acid is mediated by Sp1. J Neurochem 103:650–665PubMedCrossRefGoogle Scholar
  125. 125.
    Safe S, Kim K (2004) Nuclear receptor-mediated transactivation through interaction with Sp proteins. Prog Nucleic Acid Res Mol Biol 77:1–36PubMedCrossRefGoogle Scholar
  126. 126.
    Blanchard Y, Seenundun S, Robaire B (2007) The promoter of the rat 5α-reductase type 1 gene is bidirectional and Sp1-dependent. Mol Cell Endocrinol 264:171–183PubMedCrossRefGoogle Scholar
  127. 127.
    Tueting P, Pinna G, Costa E (2008) Homozygous and heterozygous reeler mouse mutants. In: Fatemi SH (ed) Reelin Glycoprotein: Structure, Biology and Roles in Health Disease. Springer, pp 291–309Google Scholar
  128. 128.
    Guidotti A, Ruzicka W, Grayson DR, Veldic M, Pinna G, Davis JM, Costa E (2007) S-adenosyl methionine and DNA methyltransferase-1 mRNA overexpression in psychosis. NeuroReport 18:57–60PubMedCrossRefGoogle Scholar
  129. 129.
    Costa E, Dong E, Grayson DR, Guidotti A, Ruzicka W, Veldic M (2007) Reviewing the role of DNA (cytosine-5) methyltransferase overexpression in the cortical GABAergic dysfunction associated with psychosis vulnerability. Epigenetics 2:29–36PubMedGoogle Scholar
  130. 130.
    Tremolizzo L, Carboni G, Ruzicka WB, Mitchell CP, Sugaya I, Tueting P, Sharma R, Grayson DR, Costa E, Guidotti A (2002) An epigenetic mouse model for molecular and behavioral neuropathologies related to schizophrenia vulnerability. Proc Natl Acad Sci USA 99:17095–17100PubMedCrossRefGoogle Scholar
  131. 131.
    Tremolizzo L, Doueiri MS, Dong E, Grayson DR, Davis J, Pinna G, Tueting P, Rodriguez-Menendez V, Costa E, Guidotti A (2005) Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 57:500–509PubMedCrossRefGoogle Scholar
  132. 132.
    Simonini MV, Camargo LM, Dong E, Maloku E, Veldic M, Costa E, Guidotti A (2006) The benzamide MS-275 is a potent, long-lasting brain region-selective inhibitor of histone deacetylases. Proc Natl Acad Sci USA 103:1587–1592PubMedCrossRefGoogle Scholar
  133. 133.
    Kundakovic M, Chen Y, Costa E, Grayson DR (2007) DNA methyltransferase inhibitors coordinately induce expression of the human reelin and glutamic acid decarboxylase 67 genes. Mol Pharmacol 71:644–653PubMedCrossRefGoogle Scholar
  134. 134.
    Dong E, Guidotti A, Grayson DR, Costa E (2007) Histone hyperacetylation induces demethylation of reelin and 67-kDa glutamic acid decarboxylase promoters. Proc Natl Acad Sci USA 104:4676–4681PubMedCrossRefGoogle Scholar
  135. 135.
    Veldic M, Guidotti A, Maloku E, Davis JM, Costa E (2005) In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci USA 102:2152–2157PubMedCrossRefGoogle Scholar
  136. 136.
    Tsankova N, Renthal W, Kumar A, Nestler EJ (2007) Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 8:355–367PubMedCrossRefGoogle Scholar
  137. 137.
    Franklin KBJ, Paxinos G (1997) In: The mouse brain in stereotaxic coordinates. Academic New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Graziano Pinna
    • 1
  • Roberto Carlos Agis-Balboa
    • 1
  • Fabio Pibiri
    • 1
  • Marianela Nelson
    • 1
  • Alessandro Guidotti
    • 1
  • Erminio Costa
    • 1
  1. 1.Psychiatric Institute, Department of Psychiatry, College of MedicineUniversity of Illinois at ChicagoChicagoUSA

Personalised recommendations