Neurochemical Research

, Volume 33, Issue 12, pp 2401–2406 | Cite as

The Wnt Antagonist, Dickkopf-1, as a Target for the Treatment of Neurodegenerative Disorders

  • Filippo CaraciEmail author
  • Carla Busceti
  • Francesca Biagioni
  • Eleonora Aronica
  • Federica Mastroiacovo
  • Irene Cappuccio
  • Giuseppe Battaglia
  • Valeria Bruno
  • Andrea Caricasole
  • Agata Copani
  • Ferdinando Nicoletti
Original Paper


The canonical Wnt pathway contributes to the regulation of neuronal survival and homeostasis in the CNS. Recent evidence suggests that an increased expression of Dickkopf-1 (Dkk-1), a secreted protein that negatively modulates the canonical Wnt pathway, is causally related to processes of neurodegeneration in a number of CNS disorders, including Alzheimer’s disease (AD), brain ischemia and temporal lobe epilepsy (TLE). Dkk-1 induction precedes neuronal death in cellular and animal models of excitotoxicity, β-amyloid toxicity, transient global ischemia, and kainate-induced epilepsy. In addition, Dkk-1, which is barely visible in the healthy brain, is strongly induced in brain tissue from AD patients or from patients with TLE associated with hippocampal sclerosis. These data raise the attractive possibility that Dkk-1 antagonists or neutralizing antibodies behave as neuroprotective agents by rescuing the activity of the canonical Wnt pathway.


Canonical Wnt pathway Dkk-1 Neuronal death β-Catenin Neurodegeneration Lithium 


  1. 1.
    Dale TC (1998) Signal transduction by the Wnt family of ligands. Biochem J 329:209–223PubMedGoogle Scholar
  2. 2.
    He X, Semenov M, Tamai K et al (2004) LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 131:1663–1677CrossRefPubMedGoogle Scholar
  3. 3.
    Miller JR, Hocking AM, Brown JD et al (1999) Mechanism and function of signal transduction by the Wnt/beta-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872CrossRefPubMedGoogle Scholar
  4. 4.
    Prunier C, Hocevar BA, Howe PH (2004) Wnt signaling: physiology and pathology. Growth Factors 22:141–150CrossRefPubMedGoogle Scholar
  5. 5.
    Miller JR (2002) The Wnts. Genome Biol 3(1):3001.1–3001.15Google Scholar
  6. 6.
    Moon RT, Bowerman B, Boutros M et al (2002) The promise and perils of Wnt signaling through β-catenin. Science 296:1644–1646CrossRefPubMedGoogle Scholar
  7. 7.
    Mlodzik M (2002) Planar cell polarization: do the same mechanisms regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet 18:564–571CrossRefPubMedGoogle Scholar
  8. 8.
    Kühl M, Sheldahl LC, Park M et al (2000) The Wnt/Ca2+pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–283CrossRefPubMedGoogle Scholar
  9. 9.
    Tamai K, Semenov M, Kato Y et al (2000) LDL-receptor-related proteins in Wnt signal transduction. Nature 407:530–535CrossRefPubMedGoogle Scholar
  10. 10.
    Wehrli M, Dougan ST, Caldwell K et al (2000) Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 407:527–530CrossRefPubMedGoogle Scholar
  11. 11.
    Liu C, Li Y, Semenov M et al (2002) Control of β-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell 108:837–847CrossRefPubMedGoogle Scholar
  12. 12.
    Aberle H, Bauer A, Stappert J et al (1997) Beta-catenin is a target for the ubiquitin–proteasome pathway. EMBO J 16:3797–3804CrossRefPubMedGoogle Scholar
  13. 13.
    Willert K, Nusse R (1998) Beta-catenin: a key mediator of Wnt signaling. Curr Opin Genet Dev 8:95–102CrossRefPubMedGoogle Scholar
  14. 14.
    Willert K, Jones KA (2006) Wnt signaling: is the party in the nucleus? Genes Dev 20:1394–1404CrossRefPubMedGoogle Scholar
  15. 15.
    Salinas PC (1999) Wnt factors in axonal remodelling and synaptogenesis. Biochem Soc Symp 65:101–109PubMedGoogle Scholar
  16. 16.
    Yu X, Malenka RC (2003) Beta-catenin is critical for dendritic morphogenesis. Nat Neurosci 6:1169–1177CrossRefPubMedGoogle Scholar
  17. 17.
    Murase S, Mosser E, Schuman EM (2002) Depolarization drives beta-catenin into neuronal spines promoting changes in synaptic structure and function. Neuron 35:91–105CrossRefPubMedGoogle Scholar
  18. 18.
    Niehrs C (2006) Function and biological roles of the Dickkopf family of Wnt modulators. Oncogene 25:7469–7481CrossRefPubMedGoogle Scholar
  19. 19.
    Krupnik VE, Sharp JD, Jiang C et al (1999) Functional and structural diversity of the human Dickkopf gene family. Gene 238:301–313CrossRefPubMedGoogle Scholar
  20. 20.
    Brott BK, Sokol SY (2002) Regulation of Wnt/LRP signalling by distinct domains of Dickkopf proteins. Mol Cell Biol 22:6100–6110CrossRefPubMedGoogle Scholar
  21. 21.
    Diep DB, Hoen N, Backman M et al (2004) Characterisation of the Wnt antagonists and their response to conditionally activated Wnt signalling in the developing mouse forebrain. Brain Res Dev Brain Res 153:261–270CrossRefPubMedGoogle Scholar
  22. 22.
    Grotewold L, Ruther U (2002) The Wnt antagonist Dickkopf-1 is 675 regulated by Bmp signaling and c-Jun and modulates programmed cell death. EMBO J 21:966–975CrossRefPubMedGoogle Scholar
  23. 23.
    Glinka A, Wu W, Delius H et al (1998) Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 391:357–362CrossRefPubMedGoogle Scholar
  24. 24.
    Zorn AM (2001) Wnt signalling: antagonistic Dickkopfs. Curr Biol 11:R592–R595CrossRefPubMedGoogle Scholar
  25. 25.
    Mao B, Niehrs C (2003) Kremen2 modulates Dickkopf2 activity during Wnt/LRP6 signaling. Gene 302:179–183CrossRefPubMedGoogle Scholar
  26. 26.
    Wang J, Shou J, Chen X (2000) Dickkopf-1, an inhibitor of the Wnt signaling pathway, is induced by p53. Oncogene 19:1843–1848CrossRefPubMedGoogle Scholar
  27. 27.
    Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23:2809–2818CrossRefPubMedGoogle Scholar
  28. 28.
    Choi DW (1994) Calcium and excitotoxic neuronal injury. Ann N Y Acad Sci 747:162–171PubMedGoogle Scholar
  29. 29.
    Zipfel GJ, Babcock DJ, Lee JM et al (2000) Neuronal apoptosis after CNS injury: the roles of glutamate and calcium. J Neurotrauma 17:857–869PubMedGoogle Scholar
  30. 30.
    Bruno V, Battaglia G, Copani A et al (2001) Metabotropic glutamate receptor subtypes as targets for neuroprotective drugs. J Cereb Blood Flow Metab 21:1013–1033CrossRefPubMedGoogle Scholar
  31. 31.
    Cappuccio I, Calderone A, Busceti CL et al (2005) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is required for the development of ischemic neuronal death. J Neurosci 25:2647–2657CrossRefPubMedGoogle Scholar
  32. 32.
    Jope RS (2003) Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci 24:441–443CrossRefPubMedGoogle Scholar
  33. 33.
    Scali C, Caraci F, Gianfriddo M et al (2006) Inhibition of Wnt signaling, modulation of Tau phosphorylation and induction of neuronal cell death by DKK1. Neurobiol Dis 24:254–265CrossRefPubMedGoogle Scholar
  34. 34.
    Oddo S, Caccamo A, Kitazawa M et al (2003) Amyloid deposition precedes tangle formation in a triple transgenic model of Alzheimer’s disease. Neurobiol Aging 24:1063–1070CrossRefPubMedGoogle Scholar
  35. 35.
    Blurton-Jones M, Laferla FM (2006) Pathways by which Abeta facilitates tau pathology. Curr Alzheimer Res 3:437–448CrossRefPubMedGoogle Scholar
  36. 36.
    Takashima A, Honda T, Yasutake K et al (1998) Activation of tau protein kinase I/glycogen synthase kinase-3beta by amyloid beta peptide (25–35) enhances phosphorylation of tau in hippocampal neurons. J Neurosci Res 31:317–323CrossRefGoogle Scholar
  37. 37.
    Takashima A (2006) GSK-3 is essential in the pathogenesis of Alzheimer’s disease. J Alzheimers Dis 9:309–317PubMedGoogle Scholar
  38. 38.
    Zhou J, Liyanage U, Medina M et al (1997) Presenilin 1 interaction in the brain with a novel member of the Armadillo family. NeuroReport 8:1489–1494PubMedCrossRefGoogle Scholar
  39. 39.
    Takashima A, Murayama M, Murayama O et al (1998) Presenilin 1 associates with glycogen synthase kinase-3beta and its substrate tau. Proc Natl Acad Sci USA 95:9637–9641CrossRefPubMedGoogle Scholar
  40. 40.
    Kang DE, Soriano S, Xia X et al (2002) Presenilin couples the paired phosphorylation of beta-catenin independent of axin: implications for beta-catenin activation in tumorigenesis. Cell 110:751–762CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang Z, Hartmann H, Do VM et al (1998) Destabilization of beta-catenin by mutations in presenilin-1 potentiates neuronal apoptosis. Nature 395:698–702CrossRefPubMedGoogle Scholar
  42. 42.
    De Ferrari GV, Moon RT (2006) The ups and downs of Wnt signaling in prevalent neurological disorders. Oncogene 25:7545–7553CrossRefPubMedGoogle Scholar
  43. 43.
    De Ferrari GV, Inestrosa NC (2000) Wnt signaling function in Alzheimer’s disease. Brain Res Brain Res Rev 33:1–12CrossRefPubMedGoogle Scholar
  44. 44.
    De Ferrari GV, Chacón MA, Barría MI et al (2003) Activation of Wnt signaling rescues neurodegeneration and behavioral impairments induced by beta-amyloid fibrils. Mol Psychiatry 8:195–208CrossRefPubMedGoogle Scholar
  45. 45.
    Copani A, Condorelli F, Caruso A et al (1999) Mitotic signaling by beta-amyloid causes neuronal death. FASEB J 13:2225–2234PubMedGoogle Scholar
  46. 46.
    Copani A, Caraci F, Hoozemans JJ et al (2007) The nature of the cell cycle in neurons: focus on a “non-canonical” pathway of DNA replication causally related to death. Biochim Biophys Acta 1772:409–412PubMedGoogle Scholar
  47. 47.
    Caricasole A, Copani A, Caraci F et al (2004) Induction of Dickkopf-1, a negative modulator of the Wnt pathway, is associated with neuronal degeneration in Alzheimer’s brain. J Neurosci 24:6021–6027CrossRefPubMedGoogle Scholar
  48. 48.
    De Ferrari GV, Papassotiropoulos A, Biechele T et al (2007) Common genetic variation within the low-density lipoprotein receptor-related protein 6 and late-onset Alzheimer’s disease. Proc Natl Acad Sci USA 104:9434–9439CrossRefPubMedGoogle Scholar
  49. 49.
    Biagioni F, Mastroiacovo F, Busceti CL et al (2007) Induction of transient focal brain ischemia induces the expression of the Wnt inhibitor, Dickkopf-1, in neurons of the perifocal regions in rats. Soc Neurosci Abstr Program No. 493.22Google Scholar
  50. 50.
    Honavar M, Meldrum BS (1997) Epilepsy. In: Graham DI, Lantos PI (eds) Greenfield’s neuropathology, 6th edn. Arnold, London, pp 931–971Google Scholar
  51. 51.
    Busceti CL, Biagioni F, Aronica E et al (2007) Induction of the Wnt inhibitor, Dickkopf-1, is associated with neurodegeneration related to temporal lobe epilepsy. Epilepsia 48:694–705CrossRefPubMedGoogle Scholar
  52. 52.
    Busceti CL, Biagioni F, Riozzi et al (2007) 3,4-Methylendioxymethamphetamine (ecstasy) induces the expression of the wnt inhibitor, dickkopf-1, and tau protein phosphorylation in the mouse hippocampus. Soc Neurosci Abstr Program No. 66.4Google Scholar
  53. 53.
    Zakzanis KK, Campbell Z (2006) Memory impairment in now abstinent MDMA users and continued users: a longitudinal follow-up. Neurology 66:740–741CrossRefPubMedGoogle Scholar
  54. 54.
    Wu D, Zhang Y, Liu P et al (2005) Compositions and methods for bone formation and remodeling. US Patent 2005/0196349Google Scholar
  55. 55.
    Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoël MJ et al (2001) Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 20:252–259CrossRefPubMedGoogle Scholar
  56. 56.
    Caraci F, Copani A, Battaglia G et al (2006) A dual mechanism of neuroprotection by transforming growth factor-β1 against β-amyloid neurotoxicity. Soc Neurosci Abstr Program No. 171.4Google Scholar
  57. 57.
    Torres Aleman I (2005) Role of insulin-like growth factors in neuronal plasticity and neuroprotection. Adv Exp Med Biol 567:243–258CrossRefPubMedGoogle Scholar
  58. 58.
    Vivien D, Ali C (2006) Transforming growth factor-beta signalling in brain disorders. Cytokine Growth Factor Rev 17:121–128CrossRefPubMedGoogle Scholar
  59. 59.
    Huang HC, Klein PS (2006) Multiple roles for glycogen synthase kinase-3 as a drug target in Alzheimer’s disease. Curr Drug Targets 7:1389–1397PubMedGoogle Scholar
  60. 60.
    Wada A, Yokoo H, Yanagita T et al (2005) Lithium: potential therapeutics against acute brain injuries and chronic neurodegenerative diseases. J Pharmacol Sci 99:307–321CrossRefPubMedGoogle Scholar
  61. 61.
    Nunes PV, Forlenza OV, Gattaz WF (2007) Lithium and risk for Alzheimer’s disease in elderly patients with bipolar disorder. Br J Psychiatry 190:359–360CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Filippo Caraci
    • 1
    Email author
  • Carla Busceti
    • 2
  • Francesca Biagioni
    • 2
  • Eleonora Aronica
    • 3
  • Federica Mastroiacovo
    • 2
  • Irene Cappuccio
    • 4
  • Giuseppe Battaglia
    • 2
  • Valeria Bruno
    • 2
    • 4
  • Andrea Caricasole
    • 5
  • Agata Copani
    • 1
    • 6
  • Ferdinando Nicoletti
    • 2
    • 4
  1. 1.Department of Pharmaceutical SciencesUniversity of CataniaCataniaItaly
  2. 2.I.N.M. NeuromedPozzilliItaly
  3. 3.Department of Neuropathology, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  4. 4.Department of Human Physiology and PharmacologyUniversity of Rome La SapienzaRomeItaly
  5. 5.Siena BiotechSienaItaly
  6. 6.I.B.B., CNR-CataniaCataniaItaly

Personalised recommendations