Neurochemical Research

, Volume 33, Issue 12, pp 2427–2435 | Cite as

Regulation and Function of Cyclic GMP-Mediated Pathways in Glial Cells

  • María Antonia Baltrons
  • Mariela Susana Borán
  • Paula Pifarré
  • Agustina García
Original Paper

Abstract

A large body of evidence supports a role for the NO-cGMP-protein kinase G pathway in the regulation of synaptic transmission and plasticity, brain development and neuroprotection. Circumstancial evidence implicates natriuretic peptide-stimulated cGMP formation in the same CNS functions. In addition to neurons, both cGMP-mediated pathways are functional in glial cells and an increasing number of reports indicate that they may control important aspects of glial cell physiology relevant to neuronal function. In this article we briefly review the regulation of cGMP formation in glial cells and summarize recent evidence indicating that cGMP-mediated pathways can play important roles in astroglial and microglial function in normal and diseased brain.

Keywords

Astrocytes Cell migration Cytokines Cytoskeleton cGMP Guanylyl cyclase Lipopolysaccharide Microglia Natriuretic peptides Neuroinflammation Nitric oxide synthase Phagocytosis Reactive gliosis Rho GTPases 

References

  1. 1.
    Cao LH, Yang XL (2008) Natriuretic peptides and their receptors in the central nervous system. Prog Neurobiol 84:234–248PubMedCrossRefGoogle Scholar
  2. 2.
    Lucas KA, Pitari GM, Kazerounian S et al (2000) Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev 52:375–414PubMedGoogle Scholar
  3. 3.
    Murphy S (2000) Production of nitric oxide by glial cells: regulation and potential roles in the CNS. Glia 29:1–13PubMedCrossRefGoogle Scholar
  4. 4.
    Calabrese V, Mancuso C, Calvani M et al (2007) Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat Rev Neurosci 8:766–775PubMedCrossRefGoogle Scholar
  5. 5.
    Guix FX, Uribesalgo I, Coma M et al (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126–152PubMedCrossRefGoogle Scholar
  6. 6.
    García A, Baltrons MA (2004) The nitric oxide/cyclic GMP pathway in CNS glial cells. In: Advances in molecular and cell biology. Amsterdam, pp 575–594Google Scholar
  7. 7.
    Russwurm M, Koesling D (2002) Isoforms of NO-sensitive guanylyl cyclase. Mol Cell Biochem 230:159–164PubMedCrossRefGoogle Scholar
  8. 8.
    Pifarre P, Garcia A, Mengod G (2007) Species differences in the localization of soluble guanylyl cyclase subunits in monkey and rat brain. J Comp Neurol 500:942–957PubMedCrossRefGoogle Scholar
  9. 9.
    Baltrons MA, Pifarre P, Ferrer I et al (2004) Reduced expression of NO-sensitive guanylyl cyclase in reactive astrocytes of Alzheimer disease, Creutzfeldt-Jakob disease, and multiple sclerosis brains. Neurobiol Dis 17:462–472PubMedCrossRefGoogle Scholar
  10. 10.
    Ding JD, Burette A, Nedvetsky PI et al (2004) Distribution of soluble guanylyl cyclase in the rat brain. J Comp Neurol 472:437–448PubMedCrossRefGoogle Scholar
  11. 11.
    Teunissen C, Steinbusch H, Markerink-van Ittersum M et al (2001) Presence of soluble and particulate guanylyl cyclase in the same hippocampal astrocytes. Brain Res 891:206–212PubMedCrossRefGoogle Scholar
  12. 12.
    Potter LR, Abbey-Hosch S, Dickey DM (2006) Natriuretic peptides, their receptors, and cyclic guanosine monophosphate-dependent signaling functions. Endocr Rev 27:47–72PubMedCrossRefGoogle Scholar
  13. 13.
    Wiggins AK, Shen PJ, Gundlach AL (2003) Atrial natriuretic peptide expression is increased in rat cerebral cortex following spreading depression: possible contribution to sd-induced neuroprotection. Neuroscience 118:715–726PubMedCrossRefGoogle Scholar
  14. 14.
    De Vente J, Bol JG, Steinbusch HW (1989) cGMP-producing, atrial natriuretic factor-responding cells in the rat brain. Eur J Neurosci 1:436–460PubMedCrossRefGoogle Scholar
  15. 15.
    Conti M, Beavo J (2007) Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 76:481–511PubMedCrossRefGoogle Scholar
  16. 16.
    Bender AT, Beavo JA (2004) Specific localized expression of cGMP PDEs in Purkinje neurons and macrophages. Neurochem Int 45:853–857PubMedCrossRefGoogle Scholar
  17. 17.
    de Vente J, Steinbusch H (2000) Nitric oxide-cGMP signalling in the rat brain. In: Funcional neuroanatomy of the nitric oxide system. Handbook of chemical neuroanatomy. Elsevier, Amsterdam, pp 355–415Google Scholar
  18. 18.
    Tanaka J, Markerink-van Ittersum M, Steinbusch HW et al (1997) Nitric oxide-mediated cGMP synthesis in oligodendrocytes in the developing rat brain. Glia 19:286–297PubMedCrossRefGoogle Scholar
  19. 19.
    Agullo L, Garcia A (1997) Ca2+/calmodulin-dependent cyclic GMP phosphodiesterase activity in granule neurons and astrocytes from rat cerebellum. Eur J Pharmacol 323:119–125PubMedCrossRefGoogle Scholar
  20. 20.
    Boran MS, Baltrons MA, Garcia A (2008) The ANP-cGMP-protein kinase G pathway induces a phagocytic phenotype but decreases inflammatory gene expression in microglial cells. Glia 56:394–411PubMedCrossRefGoogle Scholar
  21. 21.
    Feil R, Hofmann F, Kleppisch T (2005) Function of cGMP-dependent protein kinases in the nervous system. Rev Neurosci 16:23–41PubMedGoogle Scholar
  22. 22.
    de Vente J, Asan E, Gambaryan S et al (2001) Localization of cGMP-dependent protein kinase type II in rat brain. Neuroscience 108:27–49PubMedCrossRefGoogle Scholar
  23. 23.
    Saha RN, Pahan K (2006) Signals for the induction of nitric oxide synthase in astrocytes. Neurochem Int 49:154–163PubMedCrossRefGoogle Scholar
  24. 24.
    Oka M, Wada M, Yamamoto A et al (2004) Functional expression of constitutive nitric oxide synthases regulated by voltage-gated Na+ and Ca2+ channels in cultured human astrocytes. Glia 46:53–62PubMedCrossRefGoogle Scholar
  25. 25.
    Arbones ML, Ribera J, Agullo L et al (1996) Characteristics of nitric oxide synthase type I of rat cerebellar astrocytes. Glia 18:224–232PubMedCrossRefGoogle Scholar
  26. 26.
    Kugler P, Drenckhahn D (1996) Astrocytes and Bergmann glia as an important site of nitric oxide synthase I. Glia 16:165–173PubMedCrossRefGoogle Scholar
  27. 27.
    Catania MV, Aronica E, Yankaya B et al (2001) Increased expression of neuronal nitric oxide synthase spliced variants in reactive astrocytes of amyotrophic lateral sclerosis human spinal cord. J Neurosci 21:RC148PubMedGoogle Scholar
  28. 28.
    Cha CI, Kim JM, Shin DH et al (1998) Reactive astrocytes express nitric oxide synthase in the spinal cord of transgenic mice expressing a human Cu/Zn SOD mutation. Neuroreport 9:1503–1506PubMedGoogle Scholar
  29. 29.
    Simic G, Lucassen PJ, Krsnik Z et al (2000) nNOS expression in reactive astrocytes correlates with increased cell death related DNA damage in the hippocampus and entorhinal cortex in Alzheimer’s disease. Exp Neurol 165:12–26PubMedCrossRefGoogle Scholar
  30. 30.
    Shen PJ, Gundlach AL (1999) Prolonged induction of neuronal NOS expression and activity following cortical spreading depression (SD): implications for SD- and NO-mediated neuroprotection. Exp Neurol 160:317–332PubMedCrossRefGoogle Scholar
  31. 31.
    Caggiano AO, Kraig RP (1998) Neuronal nitric oxide synthase expression is induced in neocortical astrocytes after spreading depression. J Cereb Blood Flow Metab 18:75–87PubMedCrossRefGoogle Scholar
  32. 32.
    Wiencken AE, Casagrande VA (1999) Endothelial nitric oxide synthetase (eNOS) in astrocytes: another source of nitric oxide in neocortex. Glia 26:280–290PubMedCrossRefGoogle Scholar
  33. 33.
    Barna M, Komatsu T, Reiss CS (1996) Activation of type III nitric oxide synthase in astrocytes following a neurotropic viral infection. Virology 223:331–343PubMedCrossRefGoogle Scholar
  34. 34.
    Iwase K, Miyanaka K, Shimizu A et al (2000) Induction of endothelial nitric-oxide synthase in rat brain astrocytes by systemic lipopolysaccharide treatment. J Biol Chem 275:11929–11933PubMedCrossRefGoogle Scholar
  35. 35.
    Sohn YK, Ganju N, Bloch KD et al (1999) Neuritic sprouting with aberrant expression of the nitric oxide synthase III gene in neurodegenerative diseases. J Neurol Sci 162:133–151PubMedCrossRefGoogle Scholar
  36. 36.
    de Vente J, Steinbusch HW (1992) On the stimulation of soluble and particulate guanylate cyclase in the rat brain and the involvement of nitric oxide as studied by cGMP immunocytochemistry. Acta Histochem 92:13–38PubMedGoogle Scholar
  37. 37.
    Roy A, Fung YK, Liu X et al (2006) Up-regulation of microglial CD11b expression by nitric oxide. J Biol Chem 281:14971–14980PubMedCrossRefGoogle Scholar
  38. 38.
    Pyriochou A, Papapetropoulos A (2005) Soluble guanylyl cyclase: more secrets revealed. Cell Signal 17:407–413PubMedCrossRefGoogle Scholar
  39. 39.
    Baltrons MA, Pifarre P, Berciano MT et al (2008) LPS-induced down-regulation of NO-sensitive guanylyl cyclase in astrocytes occurs by proteasomal degradation in clastosomes. Mol Cell Neurosci 37:494–506PubMedCrossRefGoogle Scholar
  40. 40.
    Pifarre P, Baltrons MA, Davalos V et al (2007) NO-sensitive guanylyl cyclase b1 subunit interact with chromosomes during mitosis: novel role in the regulation of chromatin condensation. BMC Pharmacology 7(suppl I):s43CrossRefGoogle Scholar
  41. 41.
    Bellamy TC, Garthwaite J (2002) The receptor-like properties of nitric oxide-activated soluble guanylyl cyclase in intact cells. Mol Cell Biochem 230:165–176PubMedCrossRefGoogle Scholar
  42. 42.
    Sardon T, Baltrons MA, Garcia A (2004) Nitric oxide-dependent and independent down-regulation of NO-sensitive guanylyl cyclase in neural cells. Toxicol Lett 149:75–83PubMedCrossRefGoogle Scholar
  43. 43.
    Takata M, Filippov G, Liu H et al (2001) Cytokines decrease sGC in pulmonary artery smooth muscle cells via NO-dependent and NO-independent mechanisms. Am J Physiol Lung Cell Mol Physiol 280:L272–L278PubMedGoogle Scholar
  44. 44.
    Pedraza CE, Baltrons MA, Heneka MT et al (2003) Interleukin-1 beta and lipopolysaccharide decrease soluble guanylyl cyclase in brain cells: NO-independent destabilization of protein and NO-dependent decrease of mRNA. J Neuroimmunol 144:80–90PubMedCrossRefGoogle Scholar
  45. 45.
    Baltrons MA, Pedraza CE, Heneka MT et al (2002) Beta-amyloid peptides decrease soluble guanylyl cyclase expression in astroglial cells. Neurobiol Dis 10:139–149PubMedCrossRefGoogle Scholar
  46. 46.
    Duport S, Garthwaite J (2005) Pathological consequences of inducible nitric oxide synthase expression in hippocampal slice cultures. Neuroscience 135:1155–1166PubMedCrossRefGoogle Scholar
  47. 47.
    Bonkale WL, Winblad B, Ravid R et al (1995) Reduced nitric oxide responsive soluble guanylyl cyclase activity in the superior temporal cortex of patients with Alzheimer’s disease. Neurosci Lett 187:5–8PubMedCrossRefGoogle Scholar
  48. 48.
    Ibarra C, Nedvetsky PI, Gerlach M et al (2001) Regional and age-dependent expression of the nitric oxide receptor, soluble guanylyl cyclase, in the human brain. Brain Res 907:54–60PubMedCrossRefGoogle Scholar
  49. 49.
    Markerink-Van Ittersum M, Steinbusch HW, De Vente J (1997) Region-specific developmental patterns of atrial natriuretic factor- and nitric oxide-activated guanylyl cyclases in the postnatal frontal rat brain. Neuroscience 78:571–587PubMedCrossRefGoogle Scholar
  50. 50.
    Takuma K, Phuagphong P, Lee E et al (2001) Anti-apoptotic effect of cGMP in cultured astrocytes: inhibition by cGMP-dependent protein kinase of mitochondrial permeable transition pore. J Biol Chem 276:48093–48099PubMedGoogle Scholar
  51. 51.
    Krzan M, Stenovec M, Kreft M et al (2003) Calcium-dependent exocytosis of atrial natriuretic peptide from astrocytes. J Neurosci 23:1580–1583PubMedGoogle Scholar
  52. 52.
    Paulding WR, Sumners C (1996) Protein kinase C modulates natriuretic peptide receptors in astroglial cultures from rat brain. Am J Physiol 270:C740–C747PubMedGoogle Scholar
  53. 53.
    Teunissen CE, Steinbusch HW, Markerink-van Ittersum M et al (2000) Whole brain spheroid cultures as a model to study the development of nitric oxide synthase-guanylate cyclase signal transduction. Brain Res Dev Brain Res 125:99–115PubMedCrossRefGoogle Scholar
  54. 54.
    Moriyama N, Taniguchi M, Miyano K et al (2006) ANP inhibits LPS-induced stimulation of rat microglial cells by suppressing NF-kappaB and AP-1 activations. Biochem Biophys Res Commun 350:322–328PubMedCrossRefGoogle Scholar
  55. 55.
    Tang W, Paulding WR, Sumners C (1993) ANP receptors in neurons and astrocytes from spontaneously hypertensive rat brain. Am J Physiol 265:C106–C112PubMedGoogle Scholar
  56. 56.
    Nogami M, Shiga J, Takatsu A et al (2001) Immunohistochemistry of atrial natriuretic peptide in brain infarction. Histochem J 33:87–90PubMedCrossRefGoogle Scholar
  57. 57.
    Zielinska M, Fresko I, Konopacka A et al (2007) Hyperammonemia inhibits the natriuretic peptide receptor 2 (NPR-2)-mediated cyclic GMP synthesis in the astrocytic compartment of rat cerebral cortex slices. Neurotoxicology 28:1260–1263PubMedCrossRefGoogle Scholar
  58. 58.
    Willmott NJ, Wong K, Strong AJ (2000) A fundamental role for the nitric oxide-G-kinase signaling pathway in mediating intercellular Ca(2+) waves in glia. J Neurosci 20:1767–1779PubMedGoogle Scholar
  59. 59.
    Asano S, Matsuda T, Takuma K et al (1995) Nitroprusside and cyclic GMP stimulate Na(+)-Ca2+ exchange activity in neuronal preparations and cultured rat astrocytes. J Neurochem 64:2437–2441PubMedCrossRefGoogle Scholar
  60. 60.
    Araque A, Carmignoto G, Haydon PG (2001) Dynamic signaling between astrocytes and neurons. Annu Rev Physiol 63:795–813PubMedCrossRefGoogle Scholar
  61. 61.
    Pasti L, Pozzan T, Carmignoto G (1995) Long-lasting changes of calcium oscillations in astrocytes. A new form of glutamate-mediated plasticity. J Biol Chem 270:15203–15210PubMedCrossRefGoogle Scholar
  62. 62.
    Boran MS, Garcia A (2007) The cyclic GMP-protein kinase G pathway regulates cytoskeleton dynamics and motility in astrocytes. J Neurochem 102:216–230PubMedCrossRefGoogle Scholar
  63. 63.
    Xiong H, Yamada K, Jourdi H et al (1999) Regulation of nerve growth factor release by nitric oxide through cyclic GMP pathway in cortical glial cells. Mol Pharmacol 56:339–347PubMedGoogle Scholar
  64. 64.
    Brahmachari S, Fung YK, Pahan K (2006) Induction of glial fibrillary acidic protein expression in astrocytes by nitric oxide. J Neurosci 26:4930–4939PubMedCrossRefGoogle Scholar
  65. 65.
    Latzkovits L, Cserr HF, Park JT et al (1993) Effects of arginine vasopressin and atriopeptin on glial cell volume measured as 3-MG space. Am J Physiol 264:C603–C608PubMedGoogle Scholar
  66. 66.
    Kalisch F, Wurm A, Iandiev I et al (2006) Atrial natriuretic peptide inhibits osmotical glial cell swelling in the ischemic rat retina: dependence on glutamatergic-purinergic signaling. Exp Eye Res 83:962–971PubMedCrossRefGoogle Scholar
  67. 67.
    Touyz RM, Picard S, Schiffrin EL et al (1997) Cyclic GMP inhibits a pharmacologically distinct Na+/H+ exchanger variant in cultured rat astrocytes via an extracellular site of action. J Neurochem 68:1451–1461PubMedGoogle Scholar
  68. 68.
    Tait MJ, Saadoun S, Bell BA et al (2008) Water movements in the brain: role of aquaporins. Trends Neurosci 31:37–43PubMedCrossRefGoogle Scholar
  69. 69.
    Miyajima M, Arai H, Okuda O et al (2004) Effect of C-type natriuretic peptide (CNP) on water channel aquaporin-4 (AQP4) expression in cultured astrocytes. Brain Res Mol Brain Res 122:109–115PubMedCrossRefGoogle Scholar
  70. 70.
    Aderem A, Underhill DM (1999) Mechanisms of phagocytosis in macrophages. Annu Rev Immunol 17:593–623PubMedCrossRefGoogle Scholar
  71. 71.
    Vollmar AM (2005) The role of atrial natriuretic peptide in the immune system. Peptides 26:1086–1094PubMedCrossRefGoogle Scholar
  72. 72.
    Choi SH, Choi DH, Song KS et al (2002) Zaprinast, an inhibitor of cGMP-selective phosphodiesterases, enhances the secretion of TNF-alpha and IL-1beta and the expression of iNOS and MHC class II molecules in rat microglial cells. J Neurosci Res 67:411–421PubMedCrossRefGoogle Scholar
  73. 73.
    Paris D, Town T, Mullan M (2000) Novel strategies for opposing murine microglial activation. Neurosci Lett 278:5–8PubMedCrossRefGoogle Scholar
  74. 74.
    Paris D, Town T, Parker TA et al (1999) Inhibition of Alzheimer’s beta-amyloid induced vasoactivity and proinflammatory response in microglia by a cGMP-dependent mechanism. Exp Neurol 157:211–221PubMedCrossRefGoogle Scholar
  75. 75.
    Duan Y, Panoff J, Burrell BD et al (2005) Repair and regeneration of functional synaptic connections: cellular and molecular interactions in the leech. Cell Mol Neurobiol 25:441–450PubMedCrossRefGoogle Scholar
  76. 76.
    Heuschling P (1995) Nitric oxide modulates gamma-interferon-induced MHC class II antigen expression on rat astrocytes. J Neuroimmunol 57:63–69PubMedCrossRefGoogle Scholar
  77. 77.
    Shin CY, Lee WJ, Choi JW et al (2007) Down-regulation of matrix metalloproteinase-9 expression by nitric oxide in lipopolysaccharide-stimulated rat primary astrocytes. Nitric Oxide 16:425–432PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • María Antonia Baltrons
    • 1
  • Mariela Susana Borán
    • 1
  • Paula Pifarré
    • 1
  • Agustina García
    • 1
  1. 1.Institute of Biotechnology and Biomedicine ‘V. Villar Palasí’ and Departament of Biochemistry and Molecular BiologyUniversitat Autònoma de BarcelonaBellaterraSpain

Personalised recommendations