Advertisement

Neurochemical Research

, Volume 33, Issue 9, pp 1894–1900 | Cite as

Mitochondria are More Resistant to Hypoxic Depolarization in the Newborn than in the Adult Brain

  • Geir Arne Larsen
  • Håvard K. SkjellegrindEmail author
  • Morten Larsen Vinje
  • Jon Berg-Johnsen
Original Paper

Abstract

Hypoxic–ischemic brain injury subsequent to asphyxia represents a major cause of morbidity and death in the newborn. The newborn brain has been considered more resistant to hypoxia than the adult brain because of lower energy demand. The mechanisms underlying hypoxic brain injury, in particular the age-related vulnerability, are still only partially understood. The mitochondrial function is pivotal for the function and survival of neurons. Acutely isolated CA1 neurons from neonatal (3–6 days) and adult rats (5–6 weeks) were loaded with Rh 123, and the effect of hypoxia on the inner mitochondrial membrane potential (Δψm) was compared. During prolonged hypoxia (15 min), Δψm was lost in a majority of the neonatal neurons (83%) and in all the adult neurons. During hypoxia (5 min) followed by reoxygenation the mitochondria in 23% of the neonatal neurons were completely depolarized, whereas 85% of the adult neurons demonstrated a complete loss of Δψm. In conclusion hippocampal CA1 mitochondria in the newborn rat are more resistant to hypoxic depolarization than in the adult rat.

Keywords

Mitochondrial membrane potential Hippocampus CA1 neurons Hypoxia Rhodamine 123 Neonatal brain Age Hypoxic tolerance 

Notes

Acknowledgements

This work was supported by grants from the National Council on Cardiovascular Diseases, the Research Council of Norway, The Malthe Foundation, Oslo, Norway and the Blix Family Foundation, Oslo, Norway. We thank Professor Ansgar O. Aasen for providing excellent working conditions.

References

  1. 1.
    Volpe JJ (1992) Brain injury in the premature infant-current concepts of pathogenesis and prevention. Biol Neonate 62:231–242PubMedCrossRefGoogle Scholar
  2. 2.
    Siesjo BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1:155–185PubMedGoogle Scholar
  3. 3.
    Castilho RF, Hansson O, Ward MW et al (1998) Mitochondrial control of acute glutamate excitotoxicity in cultured cerebellar granule cells. J Neurosci 18:10277–10286PubMedGoogle Scholar
  4. 4.
    Stout AK, Raphael HM, Kanterewicz BI et al (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1:366–373PubMedCrossRefGoogle Scholar
  5. 5.
    Nicholls DG, Budd SL (2000) Mitochondria and neuronal survival. Physiol Rev 80:315–360PubMedGoogle Scholar
  6. 6.
    Ankarcrona M, Dypbukt JM, Orrenius S et al (1996) Calcineurin and mitochondrial function in glutamate-induced neuronal cell death. FEBS Lett 394:321–324PubMedCrossRefGoogle Scholar
  7. 7.
    Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519PubMedCrossRefGoogle Scholar
  8. 8.
    Puka-Sundvall M, Gajkowska B, Cholewinski M et al (2000) Subcellular distribution of calcium and ultrastructural changes after cerebral hypoxia–ischemia in immature rats. Brain Res Dev Brain Res 125:31–41PubMedCrossRefGoogle Scholar
  9. 9.
    Cheng Y, Deshmukh M, D’Costa A et al (1998) Caspase inhibitor affords neuroprotection with delayed administration in a rat model of neonatal hypoxic–ischemic brain injury. J Clin Invest 101:1992–1999PubMedCrossRefGoogle Scholar
  10. 10.
    Northington FJ, Ferriero DM, Flock DL et al (2001) Delayed neurodegeneration in neonatal rat thalamus after hypoxia–ischemia is apoptosis. J Neurosci 21:1931–1938PubMedGoogle Scholar
  11. 11.
    Nehlig A, Pereira de Vasconcelos A (1993) Glucose and ketone body utilization by the brain of neonatal rats. Prog Neurobiol 40:163–221PubMedCrossRefGoogle Scholar
  12. 12.
    Cremer JE (1982) Substrate utilization and brain development. J Cereb Blood Flow Metab 2:394–407PubMedGoogle Scholar
  13. 13.
    Johnston MV, Trescher WH, Ishida A et al (2001) Neurobiology of hypoxic–ischemic injury in the developing brain. Pediatr Res 49:735–741PubMedCrossRefGoogle Scholar
  14. 14.
    Larsen GA, Skjellegrind HK, Berg-Johnsen J et al (2006) Depolarization of mitochondria in isolated CA1 neurons during hypoxia, glucose deprivation and glutamate excitotoxicity. Brain Res 1077:153–160PubMedCrossRefGoogle Scholar
  15. 15.
    Kay AR, Wong RK (1986) Isolation of neurons suitable for patch-clamping from adult mammalian central nervous systems. J Neurosci Methods 16:227–238PubMedCrossRefGoogle Scholar
  16. 16.
    Duchen MR, Biscoe TJ (1992) Relative mitochondrial membrane potential and [Ca2+]i in type I cells isolated from the rabbit carotid body. J Physiol 450:33–61PubMedGoogle Scholar
  17. 17.
    Johnston AJ, Steiner LA, Gupta AK et al (2003) Cerebral oxygen vasoreactivity and cerebral tissue oxygen reactivity. Br J Anaesth 90:774–786PubMedCrossRefGoogle Scholar
  18. 18.
    Nehlig A, de Vasconcelos AP, Boyet S (1988) Quantitative autoradiographic measurement of local cerebral glucose utilization in freely moving rats during postnatal development. J Neurosci 8:2321–2333PubMedGoogle Scholar
  19. 19.
    Vannucci SJ, Simpson IA (2003) Developmental switch in brain nutrient transporter expression in the rat. Am J Physiol Endocrinol Metab 285:E1127–E1134PubMedGoogle Scholar
  20. 20.
    Pierre K, Pellerin L, Debernardi R et al (2000) Cell-specific localization of monocarboxylate transporters, MCT1 and MCT2, in the adult mouse brain revealed by double immunohistochemical labeling and confocal microscopy. Neuroscience 100:617–627PubMedCrossRefGoogle Scholar
  21. 21.
    Johnston MV (1995) Neurotransmitters and vulnerability of the developing brain. Brain Dev 17:301–306PubMedCrossRefGoogle Scholar
  22. 22.
    Fullerton HJ, Ditelberg JS, Chen SF et al (1998) Copper/zinc superoxide dismutase transgenic brain accumulates hydrogen peroxide after perinatal hypoxia ischemia. Ann Neurol 44:357–364PubMedCrossRefGoogle Scholar
  23. 23.
    Vannucci RC, Vannucci SJ (1997) A model of perinatal hypoxic–ischemic brain damage. Ann NY Acad Sci 835:234–249PubMedCrossRefGoogle Scholar
  24. 24.
    Towfighi J, Mauger D, Vannucci RC et al (1997) Influence of age on the cerebral lesions in an immature rat model of cerebral hypoxia–ischemia: a light microscopic study. Brain Res Dev Brain Res 100:149–160PubMedCrossRefGoogle Scholar
  25. 25.
    Greenamyre T, Penney JB, Young AB et al (1987) Evidence for transient perinatal glutamatergic innervation of globus pallidus. J Neurosci 7:1022–1030PubMedGoogle Scholar
  26. 26.
    Mitani A, Watanabe M, Kataoka K (1998) Functional change of NMDA receptors related to enhancement of susceptibility to neurotoxicity in the developing pontine nucleus. J Neurosci 18:7941–7952PubMedGoogle Scholar
  27. 27.
    Larsen GA, Skjellegrind HK, Moe MC et al (2005) Endoplasmic reticulum dysfunction and Ca2+ deregulation in isolated CA1 neurons during oxygen and glucose deprivation. Neurochem Res 30:651–659PubMedCrossRefGoogle Scholar
  28. 28.
    Friedman JE, Haddad GG (1993) Major differences in Ca2+i response to anoxia between neonatal and adult rat CA1 neurons: role of Ca2+o and Na+o. J Neurosci 13:63–72PubMedGoogle Scholar
  29. 29.
    Fiskum G, Murphy AN, Beal MF (1999) Mitochondria in neurodegeneration: acute ischemia and chronic neurodegenerative diseases. J Cereb Blood Flow Metab 19:351–369PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson LV, Walsh ML, Bockus BJ et al (1981) Monitoring of relative mitochondrial membrane potential in living cells by fluorescence microscopy. J Cell Biol 88:526–535PubMedCrossRefGoogle Scholar
  31. 31.
    Khodorov B, Pinelis V, Vergun O et al (1996) Mitochondrial deenergization underlies neuronal calcium overload following a prolonged glutamate challenge. FEBS Lett 397:230–234PubMedCrossRefGoogle Scholar
  32. 32.
    Duchen MR (1992) Ca(2+)-dependent changes in the mitochondrial energetics in single dissociated mouse sensory neurons. Biochem J 283(Pt 1):41–50PubMedGoogle Scholar
  33. 33.
    Bahar S, Fayuk D, Somjen GG et al (2000) Mitochondrial and intrinsic optical signals imaged during hypoxia and spreading depression in rat hippocampal slices. J Neurophysiol 84:311–324PubMedGoogle Scholar
  34. 34.
    Schild L, Huppelsberg J, Kahlert S et al (2003) Brain mitochondria are primed by moderate Ca2+ rise upon hypoxia/reoxygenation for functional breakdown and morphological disintegration. J Biol Chem 278:25454–25460PubMedCrossRefGoogle Scholar
  35. 35.
    Gnaiger E, Mendez G, Hand SC (2000) High phosphorylation efficiency and depression of uncoupled respiration in mitochondria under hypoxia. Proc Natl Acad Sci USA 97:11080–11085PubMedCrossRefGoogle Scholar
  36. 36.
    Cherubini E, Ben-Ari Y, Krnjevic K (1989) Anoxia produces smaller changes in synaptic transmission, membrane potential, and input resistance in immature rat hippocampus. J Neurophysiol 62:882–895PubMedGoogle Scholar
  37. 37.
    Haddad GG, Donnelly DF (1990) O2 deprivation induces a major depolarization in brain stem neurons in the adult but not in the neonatal rat. J Physiol 429:411–428PubMedGoogle Scholar
  38. 38.
    Kalman M (1984) The ouabain-sensitive component of synaptosomal respiration. Exp Brain Res 56:539–542PubMedCrossRefGoogle Scholar
  39. 39.
    Inoue N, Matsui H, Tsukui H et al (1988) The appearance of a highly digitalis-sensitive isoform of Na+,K+-ATPase during maturation in vitro of primary cultured rat cerebral neurons. J Biochem (Tokyo) 104:349–354Google Scholar
  40. 40.
    Allshire A, Bernardi P, Saris NE (1985) Manganese stimulates calcium flux through the mitochondrial uniporter. Biochim Biophys Acta 807:202–209PubMedCrossRefGoogle Scholar
  41. 41.
    Nicholls DG (1978) The regulation of extramitochondrial free calcium ion concentration by rat liver mitochondria. Biochem J 176:463–474PubMedGoogle Scholar
  42. 42.
    Zoratti M, Szabo I (1995) The mitochondrial permeability transition. Biochim Biophys Acta 1241:139–176PubMedGoogle Scholar
  43. 43.
    Parihar MS, Brewer GJ (2007) Simultaneous age-related depolarization of mitochondrial membrane potential and increased mitochondrial reactive oxygen species production correlate with age-related glutamate excitotoxicity in rat hippocampal neurons. J Neurosci Res 85:1018–1032PubMedCrossRefGoogle Scholar
  44. 44.
    Rajapakse N, Shimizu K, Payne M et al (2001) Isolation and characterization of intact mitochondria from neonatal rat brain. Brain Res Brain Res Protoc 8:176–183PubMedCrossRefGoogle Scholar
  45. 45.
    Sims NR (1990) Rapid isolation of metabolically active mitochondria from rat brain and subregions using Percoll density gradient centrifugation. J Neurochem 55:698–707PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Geir Arne Larsen
    • 1
    • 2
  • Håvard K. Skjellegrind
    • 1
    Email author
  • Morten Larsen Vinje
    • 1
  • Jon Berg-Johnsen
    • 1
  1. 1.Faculty Division Rikshospitalet, Institute for Surgical Research and Department of NeurosurgeryUniversity of OsloOsloNorway
  2. 2.Faculty Division Akershus University Hospital, Department of SurgeryUniversity of OsloNordbyhagenNorway

Personalised recommendations