Neurochemical Research

, Volume 33, Issue 8, pp 1525–1533 | Cite as

Two Novel Ergtoxins, Blockers of K+-channels, Purified from the Mexican Scorpion Centruroides elegans elegans

  • Rita Restano-Cassulini
  • Timoteo Olamendi-Portugal
  • Fernando Zamudio
  • Baltazar Becerril
  • Lourival Domingos PossaniEmail author
Original Paper


Voltage-gated potassium channels of the ether-a-go-go related gene (ERG) family are implicated in many important cellular processes. Three such genes have been cloned (erg1, erg2 and erg3) and shown to be expressed in the central nervous system (CNS) of mammalians. This communication describes the isolation and characterization of two isoforms of scorpion toxin (CeErg4 and CeErg5, systematic nomenclature γ-KTx1.7 and γ-KTx1.8, respectively) that can discriminate the various subtypes of ERG channels of human and rat. These peptides were purified from the venom of the Mexican scorpion Centruroides elegans elegans. They contain 42 amino acid residues, tightly folded by four disulfide bridges. Both peptides block in a reversible manner human and rat ERG1 channels, but have no effect on human ERG2. They also block completely and irreversibly the rat ERG2 and the human ERG3 channels hence are excellent tools for the discrimination of the various sub-types of ion-channels studied.


Ergtoxin ERG channel CeErg4 CeErg5 Centruroides elegans elegans Ion-channel Scorpion Potassium channel 



This work was partially supported by grants numbers: 014109 from Fondo Salud-CONACyT, 48646 SEP-CONACyT) and DGAPA-UNAM IN227507 to LDP. The authors are indebted to Profs. J. Schwarz, B. Ganetzky and A. Arcangeli for donation of the plasmids used in this work.


  1. 1.
    Possani LD, Rodríguez de la Vega RC (2006) Scorpion venom peptides. In: The handbook of biologically active peptides, chapter 51. Academic Press, San Diego, CA, USA, pp 339–354Google Scholar
  2. 2.
    Rodríguez de la Vega R, Possani LD (2004) Current views on scorpion toxins specific for K+-channels. Toxicon 43:865–875PubMedCrossRefGoogle Scholar
  3. 3.
    Rodríguez de la Vega RC, Possani LD (2005) Overview of scorpion toxins specific for Na+ channels and related peptides: biodiversity, structure–function relationships and evolution. Toxicon 46:831–844PubMedCrossRefGoogle Scholar
  4. 4.
    Catterall WA, Cestèle S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49(2):124–141PubMedCrossRefGoogle Scholar
  5. 5.
    Warmke JW, Ganetzky B (1994) A family of potassium channel genes related to eag in Drosophyla and mammals. Proc Natl Acad Sci (USA) 91:3438–3442CrossRefGoogle Scholar
  6. 6.
    Shi W, Wymore RS, Wang HS et al (1997) Identification of two nervous system-specific members of the erg potassium channel gene family. J Neurosci 17:9423–9432PubMedGoogle Scholar
  7. 7.
    Saganich MJ, Machado E, Rudy B (2001) Differential expression of genes encoding subthreshold-operating voltage-gated K+ channels in brain. J Neurosci 21(13):4609–4624PubMedGoogle Scholar
  8. 8.
    Papa M, Boscia F, Canitano A et al (2003) Expression pattern of the ether-a-gogo-related (ERG) K+ channel-encoding genes ERG1, ERG2, and ERG3 in the adult rat central nervous system. J Comp Neurol 466(1):119–135PubMedCrossRefGoogle Scholar
  9. 9.
    Polvani S, Masi A, Pillozzi S et al (2003) Developmentally regulated expression of the mouse homologues of the potassium channel encoding genes m-erg1, m-erg2 and m-erg3. Gene Expr Patterns 3(6):767–776PubMedCrossRefGoogle Scholar
  10. 10.
    Guasti L, Cilia E, Crociani O et al (2005) Expression pattern of the ether-a-go-go-related (ERG) family proteins in the adult mouse central nervous system: evidence for coassembly of different subunits. J Comp Neurol 491(2):157–174PubMedCrossRefGoogle Scholar
  11. 11.
    Wimmers S, Wulfsen I, Bauer CK, Schwarz JR (2001) Erg1, erg2 and erg3 K channel subunits are able to form heteromultimers. Eur J Physiol 441:450–455CrossRefGoogle Scholar
  12. 12.
    Wimmers S, Bauer CK, Schwarz JR (2002) Biophysical properties of heteromultimeric erg K+ channels. Eur J Physiol 445:423–430CrossRefGoogle Scholar
  13. 13.
    Trudeau MC, Warmke JW, Ganetzky B, Robertson GA (1995) HERG, a human inward rectifier in the voltage-gated potassium channel family. Science 269(5220):92–95PubMedCrossRefGoogle Scholar
  14. 14.
    Smith PL, Baukrowitz T, Yellen G (1996) The inward rectification mechanism of the HERG cardiac potassium channel. Nature 379(6568):833–836PubMedCrossRefGoogle Scholar
  15. 15.
    Wang S, Liu S, Morales MJ, Strauss HC, Rasmusson RL (1997) A quantitative analysis of the activation and inactivation kinetics of HERG expressed in Xenopus oocytes. J Physiol 502(1):45–60PubMedCrossRefGoogle Scholar
  16. 16.
    Sanguinetti MC, Jurkiewicz NK (1990) Two components of cardiac delayed rectifier K+ current. Differential sensitivity to block by class III antiarrhythmic agents. J Gen Physiol 96(1):195–215PubMedCrossRefGoogle Scholar
  17. 17.
    Sanguinetti MC, Jiang C, Curran ME, Keating MT (1995) A mechanistic link between an inherited and an acquired cardiac arrhythmia: HERG encodes the IKr potassium channel. Cell 81(2):299–307PubMedCrossRefGoogle Scholar
  18. 18.
    Sanguinetti MC, Curran ME, Spector PS, Keating MT (1996) Spectrum of HERG K+-channel dysfunction in an inherited cardiac arrhythmia. Proc Natl Acad Sci USA 93(5):2208–2212PubMedCrossRefGoogle Scholar
  19. 19.
    Akbarali HI, Thatte H, He XD et al (1999) Role of HERG-like K(+) currents in opossum esophageal circular smooth muscle. Am J Physiol 277:1284–1290Google Scholar
  20. 20.
    Ohya S, Horowitz B, Greenwood IA (2002) Functional and molecular identification of ERG channels in murine portal vein myocytes. Am J Physiol Cell Physiol 283(3):C866–C877PubMedGoogle Scholar
  21. 21.
    Yeung SY, Greenwood IA (2007) Pharmacological and biophysical isolation of K+ currents encoded by ether-à-go-go-related genes in murine hepatic portal vein smooth muscle cells. Am J Physiol Cell Physiol 292(1):C468–C476PubMedCrossRefGoogle Scholar
  22. 22.
    Bauer CK, Schäfer R, Schiemann D et al (1999) Functional role of the erg-like inward-rectifying K+ current in prolactin secretion from rat lactotrophs. Mol Cell Endocrinol 148(1–2):37–45PubMedCrossRefGoogle Scholar
  23. 23.
    Rosati B, Marchetti P, Crociani O et al (2000) Glucose- and arginine-induced insulin secretion by human pancreatic beta-cells: the role of HERG K(+) channels in firing and release. FASEB J 14(15):2601–2610PubMedCrossRefGoogle Scholar
  24. 24.
    Lecchi M, Redaelli E, Rosati B et al (2002) Isolation of a long-lasting eag-related gene-type K+ current in MMQ lactotrophs and its accommodating role during slow firing and prolactin release. J Neurosci 22(9):3414–3425PubMedGoogle Scholar
  25. 25.
    Gullo F, Ales E, Rosati B et al (2002) ERG K+ channel blockade enhances firing and epinephrine secretion in rat chromaffin cells: the missing link to LQT2-related sudden death? FASEB J. 17(2):330–332PubMedGoogle Scholar
  26. 26.
    Chiesa N, Rosati B, Arcangeli A et al (1997) A novel role for HERG K+ channels: spike-frequency adaptation. J Physiol 501:313–318PubMedCrossRefGoogle Scholar
  27. 27.
    Sacco T, Bruno A, Wanke E, Tempia F (2003) Functional roles of an ERG current isolated in cerebellar Purkinje neurons. J Neurophysiol 90(3):1817–1828PubMedCrossRefGoogle Scholar
  28. 28.
    Hirdes W, Schweizer M, Schuricht KS et al (2005) Fast erg K+ currents in rat embryonic serotonergic neurones. J Physiol 564:33–49PubMedCrossRefGoogle Scholar
  29. 29.
    Furlan F, Taccola G, Grandolfo M et al (2007) ERG conductance expression modulates the excitability of ventral horn GABAergic interneurons that control rhythmic oscillations in the developing mouse spinal cord. J Neurosci 27:919–928PubMedCrossRefGoogle Scholar
  30. 30.
    Gurrola GB, Rosati B, Rocchetti M et al (1999) A toxin to nervous, cardiac, and endocrine ERG K+ channels isolated from Centruroides noxius scorpion venom. FASEB J 13:953–962PubMedGoogle Scholar
  31. 31.
    Korolkova YV, Kozlov SA, Lipkin AV et al (2001) An ERG channel inhibitor from the scorpion Buthus eupeus. J Biol Chem 276(13):9868–9876PubMedCrossRefGoogle Scholar
  32. 32.
    Nastainczyk W, Meves H, Watt DD (2002) A short-chain peptide toxin isolated from Centruroides sculpturatus scorpion venom inhibits ether-à-go-go-related gene K(+) channels. Toxicon 40(7):1053–1058PubMedCrossRefGoogle Scholar
  33. 33.
    Diochot S, Loret E, Bruhn T et al (2003) APETx1, a new toxin from the sea anemone Anthopleura elegantissima, blocks voltage-gated human ether-a-go-go-related gene potassium channels. Mol Pharmacol 64(1):59–69PubMedCrossRefGoogle Scholar
  34. 34.
    Restano-Cassulini R, Korolkova YV, Diochot S et al (2006) Species diversity and peptide toxins blocking selectivity of ether-a-go-go-related gene subfamily K+ channels in the central nervous system. Mol Pharmacol 69:1673–1683PubMedCrossRefGoogle Scholar
  35. 35.
    Zhang M, Liu XS, Diochot S et al (2007) APETx1 from sea anemone Anthopleura elegantissima is a gating modifier peptide toxin of the human ether-a-go-go- related potassium channel. Mol Pharmacol 72(2):259–268PubMedCrossRefGoogle Scholar
  36. 36.
    Wanke E, Restano-Cassulini R (2007) Toxins interacting with ether-à-go-go-related gene voltage-dependent potassium channels. Toxicon 49(2):239–248PubMedCrossRefGoogle Scholar
  37. 37.
    Corona M, Gurrola GB, Merino E et al (2002) A large number of novel Ergtoxin-like genes and ERG K+-channels blocking peptides from scorpions of the genus Centruroides. FEBS Lett 532(1–2):121–126PubMedCrossRefGoogle Scholar
  38. 38.
    Possani LD, Martin BM, Svendsen I et al (1985) Scorpion toxins from Centruroides noxius and Tityus serrulatus. Primary structures and sequence comparison by metric analysis. Biochem J 229(3):739–750PubMedGoogle Scholar
  39. 39.
    Spinelli W, Moubarak IF, Parsons RW, Colatsky TJ (1993) Cellular electrophysiology of WAY-123,398, a new class III antiarrhythmic agent: specificity of IK block and lack of reverse use dependence in cat ventricular myocytes. Cardiovasc Res 27(9):1580–1591PubMedCrossRefGoogle Scholar
  40. 40.
    Olamendi-Portugal T, Somodi S, Fernández JA et al (2005) Novel alpha-KTx peptides from the venom of the scorpion Centruroides elegans selectively blockade Kv1.3 over IKCa1 K+ channels of T cells. Toxicon 46(4):418–429PubMedCrossRefGoogle Scholar
  41. 41.
    Tytgat J, Chandy KG, Garcia LM et al (1999) A unified nomenclature for short chain peptides isolated from scorpion venoms: alpha-KTx molecular subfamilies. Trends Pharmacol Sci 20:445–447CrossRefGoogle Scholar
  42. 42.
    Coronas FI, Balderas C, Pardo-Lopez L et al (2005) Amino acid sequence determination and chemical synthesis of CllErg1 (γ-KTx1.5), a K+ channel blocker peptide isolated from the scorpion Centruroides limpidus limpidus. J Braz Chem Soc 16(3A):404–411CrossRefGoogle Scholar
  43. 43.
    Stampe P, Kolmakova-Partensky L, Miller C (1992) Mapping hydrophobic residues of the interaction surface of charybdotoxin. Biophys J 62(1):8–9PubMedGoogle Scholar
  44. 44.
    Coronas FV, de Roodt AR, Portugal TO et al (2003) Disulfide bridges and blockage of Shaker B K(+)-channels by another butantoxin peptide purified from the Argentinean scorpion Tityus trivittatus. Toxicon 41(2):173–179PubMedCrossRefGoogle Scholar
  45. 45.
    Pardo-Lopez L, Zhang M, Liu J et al (2002) Mapping the binding site of a human ether-a-go-go-related gene-specific peptide toxin (ErgTx) to the channel’s outer vestibule. J Biol Chem 277(19):16403–16411PubMedCrossRefGoogle Scholar
  46. 46.
    Zhang M, Korolkova YV, Liu J et al (2003) BeKm-1 is a HERG-specific toxin that shares the structure with ChTx but the mechanism of action with ErgTx1. Biophys J 84:3022–3036PubMedCrossRefGoogle Scholar
  47. 47.
    Hill AP, Sunde M, Campbell TJ et al (2007) Mechanism of block of the hERG K+ channel by the scorpion toxin CnErg1. Biophys J 92:3925–3929CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Rita Restano-Cassulini
    • 1
  • Timoteo Olamendi-Portugal
    • 1
  • Fernando Zamudio
    • 1
  • Baltazar Becerril
    • 1
  • Lourival Domingos Possani
    • 1
    Email author
  1. 1.Departamento de Medicina Molecular y Bioprocesos, Instituto de BiotecnologíaUniversidad Nacional Autónoma de MéxicoCuernavacaMexico

Personalised recommendations