Neurochemical Research

, Volume 33, Issue 8, pp 1509–1517 | Cite as

Cholesterol Potentiates β-Amyloid-Induced Toxicity in Human Neuroblastoma Cells: Involvement of Oxidative Stress

  • Patricia Ferrera
  • Octavio Mercado-Gómez
  • Martín Silva-Aguilar
  • Mahara Valverde
  • Clorinda Arias
Original Paper

Abstract

Alterations in brain cholesterol concentration and metabolism seem to be involved in Alzheimer’s disease (AD). In fact, several experimental studies have reported that modification of cholesterol content can influence the expression of the amyloid precursor protein (APP) and amyloid β peptide (Aβ) production. However, it remains to be determined if changes in neuronal cholesterol content may influence the toxicity of Aβ peptides and the mechanism involved. Aged mice, AD patients and neurons exposed to Aβ, show a significant increase in membrane-associated oxidative stress. Since Aβ is able to promote oxidative stress directly by catalytically producing H2O2 from cholesterol, the present work analyzed the effect of high cholesterol incorporated into human neuroblastoma cells in Aβ-mediated neurotoxicity and the role of reactive oxygen species (ROS) generation. Neuronal viability was studied also in the presence of 24S-hydroxycholesterol, the main cholesterol metabolite in brain, as well as the potential protective role of the lipophilic statin, lovastatin.

Keywords

Cholesterol β-amyloid Neurotoxicity ROS Human neuroblastoma 

Notes

Acknowledgments

The authors thank Karina Hernández-Ortega for assistance with microscopic analysis and Isabel Pérez-Montfort for correction of the English manuscript. This work was supported by CONACyT 48633 and PAPIIT IN217806 grants to C. Arias and PAPIIT IN202007 grant to M. Valverde.

References

  1. 1.
    Koudinov AR, Berezov TT, Koudinova NV (2001) The levels of soluble amyloid beta in different high density lipoprotein subfractions distinguish Alzheimer’s and normal aging cerebrospinal fluid: implication for brain cholesterol pathology? Neurosci Lett 314:115–118PubMedCrossRefGoogle Scholar
  2. 2.
    Wolozin B (2001) A fluid connection: cholesterol and Aβ. Proc Natl Acad Sci USA 98:5371–5373PubMedCrossRefGoogle Scholar
  3. 3.
    Panza F, D’Introno A, Colacicco AM et al (2006) Lipid metabolism in cognitive decline and dementia. Brain Res Rev 51:275–292PubMedCrossRefGoogle Scholar
  4. 4.
    Jarvik GP, Austin MA, Fabsitz RR et al (1994) Genetic influences on age-related change in total cholesterol, low density lipoprotein-cholesterol, and triglyceride levels: longitudinal apolipoprotein E genotype effects. Genet Epidemiol 11:375–384PubMedCrossRefGoogle Scholar
  5. 5.
    Tan ZS, Seshadri S, Beiser A et al (2003) Plasma total cholesterol level as a risk factor for Alzheimer disease: the Framingham Study. Arch Intern Med 163:1053–1057PubMedCrossRefGoogle Scholar
  6. 6.
    Gomez-Isla T, West HL, Rebeck GW et al (1996) Clinical and pathological correlates of apolipoprotein E 4 in Alzheimer’s disease. Ann Neurol 39:62–70PubMedCrossRefGoogle Scholar
  7. 7.
    Lutjohann D, Breuer O, Ahlborg G et al (1996) Cholesterol homeostasis in human brain: evidence for an age-dependent flux of 24S-hydroxycholesterol from the brain into the circulation. Proc Nat Acad Sci USA 93:9799–9804PubMedCrossRefGoogle Scholar
  8. 8.
    Papassotiropoulos A, Lutjohann D, Bagli M et al (2002) 24S-hydroxycholesterol in cerebrospinal fluid is elevated in early stages of dementia. J Psychiatr Res 36:27–32PubMedCrossRefGoogle Scholar
  9. 9.
    Schonknecht P, Lutjohann D, Pantel J et al (2002) Cerebrospinal fluid 24S-hydroxycholesterol is increased in patients with Alzheimer’s disease compared to healthy controls. Neurosci Lett 324:83–85PubMedCrossRefGoogle Scholar
  10. 10.
    Refolo LM, Malester B, LaFrancois J et al (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331PubMedCrossRefGoogle Scholar
  11. 11.
    Galbete JL, Martin TR, Peressini E et al (2000) Cholesterol decreases secretion of the secreted form of amyloid precursor protein by interfering with glycosylation in the protein secretory pathway. Biochem J 348:307–313PubMedCrossRefGoogle Scholar
  12. 12.
    Sparks DL, Scheff SW, Hunsaker JC 3rd et al (1994) Induction of Alzheimer-like β-amyloid immunoreactivity in the brains of rabbits with dietary cholesterol. Exp Neurol 126:88–94PubMedCrossRefGoogle Scholar
  13. 13.
    Burns MP, Noble WJ, Olm V et al (2003) Co-localization of cholesterol, apolipoprotein E and fibrillar Aβ in amyloid plaques. Brain Res Mol Brain Res 110:119–125PubMedCrossRefGoogle Scholar
  14. 14.
    Mori T, Paris D, Town T et al (2001) Cholesterol accumulates in senile plaques of Alzheimer disease patients and in transgenic APP(SW) mice. J Neuropathol Exp Neurol 60:778–785PubMedGoogle Scholar
  15. 15.
    Ghribi O, Larsen B, Schrag M et al (2006) High cholesterol content in neurons increases BACE, β-amyloid, and phosphorylated tau levels in rabbit hippocampus. Exp Neurol 200:460–467PubMedCrossRefGoogle Scholar
  16. 16.
    Jick H, Zornberg GL, Jick SS et al (2000) Statins and the risk of dementia. Lancet 356:1627–1631PubMedCrossRefGoogle Scholar
  17. 17.
    Fassbender K, Simons M, Bergmann C et al (2001) Simvastatin strongly reduces levels of Alzheimer’s disease β-amyloid peptides Aβ42 and Aβ40 in vitro and in vivo. Proc Natl Acad Sci USA 98:5856–5861PubMedCrossRefGoogle Scholar
  18. 18.
    Hoglund K, Thelen KM, Syversen S et al (2005) The effect of simvastatin treatment on the amyloid precursor protein and brain cholesterol metabolism in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 19:256–265PubMedCrossRefGoogle Scholar
  19. 19.
    Hayashi T, Hamakawa K, Nagotani S et al (2005) HMG CoA reductase inhibitors reduce ischemic brain injury of Wistar rats through decreasing oxidative stress on neurons. Brain Res 1037:52–58PubMedCrossRefGoogle Scholar
  20. 20.
    Cutler RG, Kelly J, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc Natl Acad Sci USA 101:2070–2075PubMedCrossRefGoogle Scholar
  21. 21.
    Opazo C, Huang X, Cherny RA et al (2002) Metalloenzyme-like activity of Alzheimer’s disease β-amyloid Cu-dependent catalytic conversion of dopamine, cholesterol, and biological reducing agents to neurotoxic H2O2. J Biol Chem 277:40302–40308PubMedCrossRefGoogle Scholar
  22. 22.
    Nelson TJ, Alkon DLJ (2005) Oxidation of cholesterol by amyloid precursor protein and β-amyloid peptide. Biol Chem 280:7377–7387CrossRefGoogle Scholar
  23. 23.
    Vaya J, Schipper HM (2007) Oxysterols, cholesterol homeostasis, and Alzheimer disease. J Neurochem 6:1727–1737CrossRefGoogle Scholar
  24. 24.
    Yankner BA, Duffy LK, Kirschner DA (1990) Neurotrophic and neurotoxic effects of amyloid β protein: reversal by tachykinin neuropeptides. Science 250:279–282PubMedCrossRefGoogle Scholar
  25. 25.
    Reynolds CP, Biedler JL, Spengler BA et al (1986) Characterization of human neuroblastoma cell lines established before and after therapy. J Natl Cancer Inst 76:375–387PubMedGoogle Scholar
  26. 26.
    Arias C, Arrieta I, Tapia R (1995) β-amyloid peptide 25–35 potentiates the calcium-dependent release of excitatory amino acids from depolarized hippocampal slices. J Neurosci Res 41:561–566PubMedCrossRefGoogle Scholar
  27. 27.
    Mungarro X, Ferrera P, Morán J et al (2002) β-amyloid peptide induces ultrastructural changes in synaptosomes and potentiates mitochondrial dysfunction in the presence of ryanodine. J Neurosci Res 68:89–96CrossRefGoogle Scholar
  28. 28.
    Montiel T, Quiroz-Baez R, Massieu L et al (2006) Role of oxidative stress on beta-amyloid neurotoxicity elicited during impairment of energy metabolism in the hippocampus: protection by antioxidants. Exp Neurol 200:496–508PubMedCrossRefGoogle Scholar
  29. 29.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J Immunol Meth 65:55–63CrossRefGoogle Scholar
  30. 30.
    Kruth HS (1984) Filipin-positive, oil red O-negative particles in atherosclerotic lesions induced by cholesterol feeding. Lab Invest 50:87–93PubMedGoogle Scholar
  31. 31.
    Lee VM, Quinn PA, Jennings SC et al (2003) NADPH oxidase activity in preeclampsia with immortalized lymphoblasts used as models. Hypertension 41:925–931PubMedCrossRefGoogle Scholar
  32. 32.
    Gomes A, Fernandes E, Lima JL (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 31:45–80CrossRefGoogle Scholar
  33. 33.
    Bouaïcha N, Maatouk I (2004) Microcystin-LR and nodularin induce intracellular glutathione alteration, reactive oxygen species production and lipid peroxidation in primary cultured rat hepatocytes. Toxicol Lett 148:53–63PubMedCrossRefGoogle Scholar
  34. 34.
    Jones KD, Couldwell WT, Hinton DR et al (1994) Lovastatin induces growth inhibition and apoptosis in human malignant glioma cells. Biochem Biophys Res Commun 205:1681–1687PubMedCrossRefGoogle Scholar
  35. 35.
    Bush AI (2003) The metallobiology of Alzheimer’s disease. Trends Neurosci 26:207–214PubMedCrossRefGoogle Scholar
  36. 36.
    Moreira PI, Honda K, Liu Q et al (2005) Oxidative stress: the old enemy in Alzheimer’s disease pathophysiology. Curr Alzheimer Res 2:403–408PubMedCrossRefGoogle Scholar
  37. 37.
    Butterfield DA (2002) Amyloid β-peptide (1–42)-induced oxidative stress and neurotoxicity: implications for neurodegeneration in Alzheimer’s disease brain. Free Radic Res 36:1307–1313PubMedCrossRefGoogle Scholar
  38. 38.
    Butterfield DA, Sultana R (2007) Redox proteomics identification of oxidatively modified brain proteins in Alzheimer’s disease and mild cognitive impairment: insights into the progression of this dementing disorder. J Alzheimers Dis 12:61–72PubMedGoogle Scholar
  39. 39.
    Pereira C, Santos MS, Oliveira C (1999) Involvement of oxidative stress on the impairment of energy metabolism induced by Aβ peptides on PC12 cells: protection by antioxidants. Neurobiol Dis 6:209–219PubMedCrossRefGoogle Scholar
  40. 40.
    Hajieva P, Behl C (2006) Antioxidants as a potential therapy against age-related neurodegenerative diseases: amyloid β toxicity and Alzheimer’s disease. Curr Pharm Des 12:699–704PubMedCrossRefGoogle Scholar
  41. 41.
    Sagara Y, Dargusch R, Klier FG et al (1996) Increased antioxidant enzyme activity in amyloid β protein-resistant cells. J Neurosci 16:497–505PubMedGoogle Scholar
  42. 42.
    Behl C (1999) Alzheimer’s disease and oxidative stress: implications for novel therapeutic approaches. Prog Neurobiol 57:301–323PubMedCrossRefGoogle Scholar
  43. 43.
    Arias C, Montiel T, Quiroz-Báez R et al (2002) β-Amyloid neurotoxicity is exacerbated during glycolysis inhibition and mitochondrial impairment in the rat hippocampus in vivo and in isolated nerve terminals: implications for Alzheimer’s disease. Exp Neurol 176:163–174PubMedCrossRefGoogle Scholar
  44. 44.
    Haeffner F, Smith DG, Barnham KJ et al (2005) Model studies of cholesterol and ascorbate oxidation by copper complexes: relevance to Alzheimer’s disease β-amyloid metallochemistry. J Inorg Biochem 99:2403–2422PubMedCrossRefGoogle Scholar
  45. 45.
    Prehn JH, Bindokas VP, Jordan J et al (1996) Protective effect of transforming growth factor-β 1 on β-amyloid neurotoxicity in rat hippocampal neurons. Mol Pharmacol 49:319–328PubMedGoogle Scholar
  46. 46.
    Zou K, Gong JS, Yanagisawa K et al (2002) A novel function of monomeric amyloid β-protein serving as an antioxidant molecule against metal-induced oxidative damage. J Neurosci 22:4833–4841PubMedGoogle Scholar
  47. 47.
    Nunomura A, Perry G, Pappolla MA et al (1999) RNA oxidation is a prominent feature of vulnerable neurons in Alzheimer’s disease. J Neurosci 19:1959–1964PubMedGoogle Scholar
  48. 48.
    Rottkamp CA, Raina AK, Zhu X et al (2001) Redox-active iron mediates amyloid-β toxicity. Free Radic Biol Med 30:447–450PubMedCrossRefGoogle Scholar
  49. 49.
    Huang X, Cuajungco MP, Atwood CS et al (1999) Cu(II) potentiation of Alzheimer Aβ neurotoxicity. Correlation with cell-free hydrogen peroxide production and metal reduction. J Biol Chem 274:37111–37116PubMedCrossRefGoogle Scholar
  50. 50.
    Refolo LM, Malester B, LaFrancois J et al (2000) Hypercholesterolemia accelerates the Alzheimer’s amyloid pathology in a transgenic mouse model. Neurobiol Dis 7:321–331PubMedCrossRefGoogle Scholar
  51. 51.
    Puglielli L, Friedlich AL, Setchell KDR et al (2005) Alzheimer disease β-amyloid activity mimics cholesterol oxidase. J Clin Invest 115:2556–2563PubMedCrossRefGoogle Scholar
  52. 52.
    Leoni V, Masterman T, Patel P et al (2003) Side chain oxidized oxysterols in cerebrospinal fluid and the integrity of blood-brain and blood-cerebrospinal fluid barriers. J Lipid Res 44:793–799PubMedCrossRefGoogle Scholar
  53. 53.
    Kölsch H, Heun R, Kerksiek A et al (2004) Altered levels of plasma 24S- and 27-hydroxycholesterol in demented patients. Neurosci Lett 368:303–308PubMedCrossRefGoogle Scholar
  54. 54.
    Kölsch H, Ludwig M, Lütjohann D et al (2001) Neurotoxicity of 24-hydroxycholesterol, an important cholesterol elimination product of the brain, may be prevented by vitamin E and estradiol-17β. J Neural Transm 108:475–488PubMedCrossRefGoogle Scholar
  55. 55.
    Lee CL, Kuo TF, Wang JJ et al (2007) Red mold rice ameliorates impairment of memory and learning ability in intracerebroventricular amyloid β-infused rat by repressing amyloid β accumulation. J Neurosci Res 85:3171–3182PubMedCrossRefGoogle Scholar
  56. 56.
    März P, Otten U, Miserez AR (2007) Statins induce differentiation and cell death in neurons and astroglia. Glia 55:1–12PubMedCrossRefGoogle Scholar
  57. 57.
    García-Román N, Alvarez AM, Toro MJ et al (2001) Lovastatin induces apoptosis of spontaneously immortalized rat brain neuroblasts: involvement of nonsterol isoprenoid biosynthesis inhibition. Mol Cell Neurosci 17:329–341PubMedCrossRefGoogle Scholar
  58. 58.
    Zacco A, Togo J, Spence K et al (2003) 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors protect cortical neurons from excitotoxicity. J Neurosci 23:11104–11111PubMedGoogle Scholar
  59. 59.
    Hsieh CH, Jeng SF, Hsieh MW et al (2008) Statin-induced heme oxygenase-1 increases NF-κB activation and oxygen radical production in cultured neuronal cells exposed to lipopolysaccharide. Toxicol Sci 102:150–159PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Patricia Ferrera
    • 1
  • Octavio Mercado-Gómez
    • 1
  • Martín Silva-Aguilar
    • 1
  • Mahara Valverde
    • 1
  • Clorinda Arias
    • 1
  1. 1.Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexicoMexico

Personalised recommendations