Neurochemical Research

, Volume 33, Issue 7, pp 1332–1340 | Cite as

Structural and Quantitative Comparison of Cerebrospinal Fluid Glycoproteins in Alzheimer’s Disease Patients and Healthy Individuals

  • Carina Sihlbom
  • Pia Davidsson
  • Magnus Sjögren
  • Lars-Olof Wahlund
  • Carol L. Nilsson
Original Paper

Abstract

Glycoproteins in cerebrospinal fluid (CSF) are altered in Alzheimer’s Disease (AD) patients compared to control individuals. We have utilized albumin depletion prior to 2D gel electrophoresis to enhance glycoprotein concentration for image analysis as well as structural glycoprotein determination without glycan release using mass spectrometry (MS). The benefits of a direct glycoprotein analysis approach include minimal sample manipulation and retention of structural details. A quantitative comparison of gel-separated glycoprotein isoforms from twelve AD patients and twelve control subjects was performed with glycoprotein-specific and total protein stains. We have also compared glycoforms in pooled CSF obtained from AD patients and control subjects with mass spectrometry. One isoform of α1-antitrypsin showed decreased glycosylation in AD patients while another glycosylated isoform of an unassigned protein was up-regulated. Protein expression levels of α1-antitrypsin were decreased, while the protein levels of apolipoprotein E and clusterin were increased in AD. No specific glycoform could be specifically assigned to AD.

Keywords

Proteomics Glycoproteomics Glycoprotein N-linked Glycosylation Glycoform Isoform CSF Cerebrospinal fluid Alzheimer’s Disease α1-antitrypsin Apolipoprotein E Clusterin Haptoglobin α-1-β-glycoprotein Zinc-α-2-glycoprotein 2D gel electrophoresis 2D-GE Albumin depletion Image analysis Mass spectrometry FT-ICR MS Linear ion trap 

References

  1. 1.
    Nakagawa K, Kitazume S, Oka R et al (2006) Sialylation enhances the secretion of neurotoxic amyloid-beta peptides. J Neurochem 96:924–933PubMedCrossRefGoogle Scholar
  2. 2.
    Liu F, Zaidi T, Iqbal K et al (2002) Role of glycosylation in hyperphosphorylation of tau in Alzheimer’s disease. FEBS Lett 512:101–106PubMedCrossRefGoogle Scholar
  3. 3.
    Saez-Valero J, Fodero LR, Sjogren M et al (2003) Glycosylation of acetylcholinesterase and butyrylcholinesterase changes as a function of the duration of Alzheimer’s disease. J Neurosci Res 72:520–526PubMedCrossRefGoogle Scholar
  4. 4.
    Robertson LA, Moya KL, Breen KC (2004) The potential role of tau protein O-glycosylation in Alzheimer’s disease. J Alzheimers Dis 6:489–495PubMedGoogle Scholar
  5. 5.
    Botella-Lopez A, Burgaya F, Gavin R et al (2006) Reelin expression and glycosylation patterns are altered in Alzheimer’s disease. Proc Natl Acad Sci USA 103:5573–5578PubMedCrossRefGoogle Scholar
  6. 6.
    Romeo MJ, Espina V, Lowenthal M et al (2005) CSF proteome: a protein repository for potential biomarker identification. Expert Rev Proteomics 2:57–70PubMedCrossRefGoogle Scholar
  7. 7.
    Puchades M, Hansson SF, Nilsson CL et al (2003) Proteomic studies of potential cerebrospinal fluid protein markers for Alzheimer’s disease. Brain Res Mol Brain Res 118:140–146PubMedCrossRefGoogle Scholar
  8. 8.
    Andreasen N, Minthon L, Davidsson P et al (2001) Evaluation of CSF-tau and CSF-Abeta42 as diagnostic markers for Alzheimer disease in clinical practice. Arch Neurol 58:373–379PubMedCrossRefGoogle Scholar
  9. 9.
    Jobst KA, Barnetson LP, Shepstone BJ (1997) Accurate prediction of histologically confirmed Alzheimer’s disease and the differential diagnosis of dementia: the use of NINCDS-ADRDA and DSM-III-R criteria, SPECT, X-ray CT, and APO E4 medial temporal lobe dementias. The Oxford Project to Investigate Memory and Aging. Int Psychogeriatr 1(Suppl 9):191–222; discussion 247–252CrossRefGoogle Scholar
  10. 10.
    Itoh N, Arai H, Urakami K et al (2001) Large-scale, multicenter study of cerebrospinal fluid tau protein phosphorylated at serine 199 for the antemortem diagnosis of Alzheimer’s disease. Ann Neurol 50:150–156PubMedCrossRefGoogle Scholar
  11. 11.
    Pan S, Wang Y, Quinn JF et al (2006) Identification of Glycoproteins in Human Cerebrospinal Fluid with a Complementary Proteomic Approach. J Proteome Res 5:2769–2779PubMedCrossRefGoogle Scholar
  12. 12.
    Davidsson P, Paulson L, Hesse C et al (2001) Proteome studies of human cerebrospinal fluid and brain tissue using a preparative two-dimensional electrophoresis approach prior to mass spectrometry. Proteomics 1:444–452PubMedCrossRefGoogle Scholar
  13. 13.
    Davidsson P, Westman-Brinkmalm A, Nilsson CL et al (2002) Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 13:611–615PubMedCrossRefGoogle Scholar
  14. 14.
    Hakansson K, Emmett MR, Marshall AG et al (2003) Structural analysis of 2D-gel-separated glycoproteins from human cerebrospinal fluid by tandem high-resolution mass spectrometry. J Proteome Res 2:581–588PubMedCrossRefGoogle Scholar
  15. 15.
    Ogata Y, Charlesworth C, Muddiman D (2005) Evaluation of Protein Depletion Methods for the Analysis of Total-, Phospho- and Glycoproteins in Lumbar Cerebrospinal Fluid. J Proteome Res. Web Release Date:31–Mar-2005Google Scholar
  16. 16.
    Finehout EJ, Franck Z, Lee KH (2004) Towards two-dimensional electrophoresis mapping of the cerebrospinal fluid proteome from a single individual. Electrophoresis 25:2564–2575PubMedCrossRefGoogle Scholar
  17. 17.
    Finehout EJ, Franck Z, Lee KH (2005) Complement protein isoforms in CSF as possible biomarkers for neurodegenerative disease. Dis Markers 21:93–101PubMedGoogle Scholar
  18. 18.
    Hu Y, Malone JP, Fagan AM et al (2005) Comparative proteomic analysis of intra- and interindividual variation in human cerebrospinal fluid. Mol Cell Proteomics 4:2000–2009PubMedCrossRefGoogle Scholar
  19. 19.
    Castano EM, Roher AE, Esh CL et al (2006) Comparative proteomics of cerebrospinal fluid in neuropathologically-confirmed Alzheimer’s disease and non-demented elderly subjects. Neurol Res 28:155–163PubMedCrossRefGoogle Scholar
  20. 20.
    Sihlbom C, Davidsson P, Emmett MR et al (2004) Glycoproteomics of cerebrospinal fluid in neurodegenerative disease. Inter J Mass Spectrom 234:145–152CrossRefGoogle Scholar
  21. 21.
    APA (1994) Diagnostical and statistical manual of mental disorders, 4th edn. American Phychiatric Association, Committee on Nomenclature and statistics, Washington, DCGoogle Scholar
  22. 22.
    WHO (1992) The ICD-10 classification of mental and behavioural disorders. WHO, GeneveGoogle Scholar
  23. 23.
    Sihlbom C, Davidsson P, Nilsson CL (2005) Prefractionation of cerebrospinal fluid to enhance glycoprotein concentration prior to structural determination with FT-ICR mass spectrometry. J Proteome Res 4:2294–2301PubMedCrossRefGoogle Scholar
  24. 24.
    Shevchenko A, Wilm M, Mann M (1997) Peptide sequencing by mass spectrometry for homology searches and cloning of genes. J Protein Chem 16:481–490PubMedCrossRefGoogle Scholar
  25. 25.
    Perkins DN, Pappin DJ, Creasy DM et al (1999) Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20:3551–3567PubMedCrossRefGoogle Scholar
  26. 26.
    Gollin PA, Kalaria RN, Eikelenboom P et al (1992) Alpha 1-antitrypsin and alpha 1-antichymotrypsin are in the lesions of Alzheimer’s disease. Neuroreport 3:201–203PubMedCrossRefGoogle Scholar
  27. 27.
    Lomas DA, Stone SR, Llewellyn-Jones C et al (1995) The control of neutrophil chemotaxis by inhibitors of cathepsin G and chymotrypsin. J Biol Chem 270:23437–23443PubMedCrossRefGoogle Scholar
  28. 28.
    Sun YX, Minthon L, Wallmark A et al (2003) Inflammatory markers in matched plasma and cerebrospinal fluid from patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 16:136–144PubMedCrossRefGoogle Scholar
  29. 29.
    Teunissen CE, de Vente J, Steinbusch HW et al (2002) Biochemical markers related to Alzheimer’s dementia in serum and cerebrospinal fluid. Neurobiol Aging 23:485–508PubMedCrossRefGoogle Scholar
  30. 30.
    Johnson G, Brane D, Block W et al (1992) Cerebrospinal fluid protein variations in common to Alzheimer’s disease and schizophrenia. Appl Theor Electrophor 3:47–53PubMedGoogle Scholar
  31. 31.
    Lidstrom AM, Hesse C, Rosengren L et al (2001) Normal levels of clusterin in cerebrospinal fluid in Alzheimer’s disease, and no change after acute ischemic stroke. J Alzheimers Dis 3:435–442PubMedGoogle Scholar
  32. 32.
    Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981PubMedCrossRefGoogle Scholar
  33. 33.
    Hesse C, Larsson H, Fredman P et al (2000) Measurement of apolipoprotein E (apoE) in cerebrospinal fluid. Neurochem Res 25:511–517PubMedCrossRefGoogle Scholar
  34. 34.
    Nilsson CL (2005) High-resolution mass spectrometric approaches to glycoprotein characterization. In: Marko-Varga G (ed) Proteomics and peptidomics-technology developments driving biology. Elsevier, Amsterdam, pp 411–428Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Carina Sihlbom
    • 1
  • Pia Davidsson
    • 2
  • Magnus Sjögren
    • 3
  • Lars-Olof Wahlund
    • 4
  • Carol L. Nilsson
    • 1
    • 5
  1. 1.Department of Medical Chemistry and Cell BiologyInstitute of Biomedicine, Sahlgrenska Academy at Goteborg UniversityGoteborgSweden
  2. 2.Discovery Medicine/EpidemiologyAstraZeneca R&D MölndalMolndalSweden
  3. 3.Translational MedicineOrganon NVOssThe Netherlands
  4. 4.Neurotec Department, Section of Clinical GeriatricsKarolinska Institutet, Karolinska University Hospital in HuddingeStockholmSweden
  5. 5.National High Magnetic Field Laboratory, Florida State UniversityTallahasseeUSA

Personalised recommendations