Neurochemical Research

, Volume 33, Issue 5, pp 912–918

Prenatal Exposure to Ozone Disrupts Cerebellar Monoamine Contents in Newborn Rats

  • Rigoberto Gonzalez-Pina
  • Carmen Escalante-Membrillo
  • Alfonso Alfaro-Rodriguez
  • Angelica Gonzalez-Maciel
Original Paper

Abstract

Ozone (O3) is widely distributed in environments with high levels of air pollution. Since cerebellar morphologic disruptions have been reported with prenatal O3 exposure, O3 may have an effect on some neurotransmitter systems, such as monoamines. In order to test this hypothesis, we used 60 male rats taken from either, mothers exposed to 1 ppm of O3 during the entire pregnancy, or from mothers breathing filtered and clean air during pregnancy. The cerebellum was extracted at 0, 5, and 10 postnatal days. Tissues were processed in order to analyze by HPLC, dopamine (DA) levels, 3,4 dihydroxyphenilacetic acid (DOPAC) and homovanillic acid (HVA), norepinephrine (NA), serotonin, and 5-hydroxy-indole-acetic acid (5-HIAA) contents. Results showed a decrease of DA, NA, DOPAC and HVA mainly in 0 and 5 postnatal days. There were no changes in 5-HT levels, and 5-HIAA showed an increase after 10 postnatal days. DOPAC + HVA/DA ratio showed changes in 0 and 10 postnatal days, while 5-HIAA/5-HT ratio showed a slight decrease in 0 days. The data suggest that prenatal O3 exposure disrupts the cerebellar catecholamine system rather than the indole-amine system. Disruptions in cerebellar NA could lead to ataxic symptoms and also could limit recovery after cortical brain damage in adults. These finding are important given that recovery mechanisms observed in animals are also observed in humans.

Keywords

Ozone Prenatal exposure Monoamines Cerebellum Brain recovery Rats 

References

  1. 1.
    Arito H, Uchiyama I, Arakawa H, Yokoyama E (1990) Ozone-induced bradycardia and arrhytmia and their relation to sleep–wakefulness in rats. Toxicol Lett 52:169–178PubMedCrossRefGoogle Scholar
  2. 2.
    Huitron-Resendiz S, Custodio-Ramirez V, Escalante-Membrillo C, Gonzalez-Pina R, Paz C (1994) Sleep alterations and brain regional changes of serotonin and its metabolite in rats exposed to ozone. Neurosc Lett 177:119–122CrossRefGoogle Scholar
  3. 3.
    Escalante-Membrillo C, Paz C (1997) Development of an experimental model of epilepsy in rats exposed to ozone. Toxicol Lett 93:103–107PubMedCrossRefGoogle Scholar
  4. 4.
    Gonzalez-Pina R, Paz C (1997) Brain monoamine changes in rats after short periods of ozone exposure. Neurochem Res 22:63–66PubMedCrossRefGoogle Scholar
  5. 5.
    Cottet-Emard JM, Dalmaz Y, Pequignot J, Peyrin L, Pequignot JM (1997) Long-term exposure to ozone alters peripheral and central catecholamine activity in rats. Pflugers Arch Eur J Physiol 433:744–749CrossRefGoogle Scholar
  6. 6.
    Gonzalez-Pina R, Alfaro-Rodriguez A (2003) Ozone exposure alters 5-hydroxy-indole-acetic acid contents in dialysates from dorsal raphe and medial preoptic area in freely moving rats. Relationships with simultaneous sleep disturbances. Chem Biol Interac 146:147–156CrossRefGoogle Scholar
  7. 7.
    Alfaro-Rodriguez A, Gonzalez-Pina R (2005) Ozone-induced paradoxical sleep decrease is related to diminished acetylcholine levels in the medial preoptic area in rats. Chem Biol Interact 151(3):151–158PubMedCrossRefGoogle Scholar
  8. 8.
    Pryor WA, Squadrito GL, Friedman M (1995) The cascade mechanisms to explain ozone toxicity: the role of lipid ozonation products. Free Rad Biol Med 9:935–941CrossRefGoogle Scholar
  9. 9.
    Rahman IU, Massaro GD, Massaro D (1992) Exposure of rats to ozone: evidence of damage to heart and brain. Free Rad Biol Med 12:323–326PubMedCrossRefGoogle Scholar
  10. 10.
    Escalante-Membrillo C, Gonzalez-Maciel A, Reynoso-Robles R, Gonzalez-Maciel A, Gonzalez-Pina R (2005) Brain thiobarbituric acid-reactive substances in rats after short periods of ozone exposure. Environ Res 99:68–71PubMedCrossRefGoogle Scholar
  11. 11.
    Bignami C, Musi B, Dell’Omo G, Laviola G, Alleva E (1994) Limited effects of ozone exposure during pregnancy on physical and neurobehavioral development of CD-1 mice. Toxicol Appl Pharmacol 129(2):264–271PubMedCrossRefGoogle Scholar
  12. 12.
    Santucci D, Sorace A, Francia N, Aloe L, Alleva E (2006) Prolonged prenatal exposure to low-level ozone affects aggressive behavior as well as NGF and BDNF levels in the central nervous system of CD-1 mice. Behav Brain Res 166(1):124–130PubMedCrossRefGoogle Scholar
  13. 13.
    Rivas-Manzano P, Paz C (1999) Cerebellar morphological alterations in rats induced by prenatal ozone exposure. Neurosci Lett 276(1):37–40PubMedCrossRefGoogle Scholar
  14. 14.
    Romero-Velazquez RM, Alfaro-Rodriguez A, Gonzalez-Pina R, Gonzalez-Maciel A (2002) Effect of ozone prenatal exposure on post-natal development of cerebellum. Proc West Pharmacol Soc 45:65–67PubMedGoogle Scholar
  15. 15.
    Glowinski J, Iversen LL (1966) Regional studies of catecholamines in the rat brain. Disposition of 3H-norepinephrine, 3H-dopamine and 3H-DOPA in various regions of the brain. J Neurochem 13:655–669PubMedCrossRefGoogle Scholar
  16. 16.
    Diggory GL, Buckett WR (1984) An automated method to measure monoamines and metabolites using elevated temperature reversed phase HPLC with electrochemical detection, Application to striatal dopamine and hyppocampal serotonin turnover. J Pharmacol Methods 11:207–217PubMedCrossRefGoogle Scholar
  17. 17.
    Maynard RL (1993) Air pollution: should we be concerned about it? J Royal Soc Med 86:63–64Google Scholar
  18. 18.
    West JJ, Fiore AM, Horowitz LW, Mauzerall DL (2006) Global health benefits of mitigating ozone pollution with methane emission controls. Proc Natl Acad Sci 103(11):3988–3993PubMedCrossRefGoogle Scholar
  19. 19.
    Levy JI, Chereynsky SM, Sarnat JA (2005) Ozone exposure and mortality: an empiric bayes metaregression analysis. Epidemiology 16(4):458–468PubMedCrossRefGoogle Scholar
  20. 20.
    Schwartz J (2005) How sensitive is the association between ozone and daily deaths to control for temperature? Am J Respir Crit Care Med 171(6):627–631PubMedCrossRefGoogle Scholar
  21. 21.
    Saab CY, Willis WD (2003) The cerebellum: organization, functions and its role in nociception. Brain Res Rev 42:85–95PubMedCrossRefGoogle Scholar
  22. 22.
    Xu F, Frazier DT (2000) Modulation of respiratory motor output by cerebellar deep nuclei in the rat. J Appl Physiol 89:996–1002PubMedGoogle Scholar
  23. 23.
    Fiez JA (1996) Cerebellar contributions to cognition. Neuron 16:13–15PubMedCrossRefGoogle Scholar
  24. 24.
    Nixon PD, Passingham RE (2001) Predicting sensory events. The role of the cerebellum in motor learning. Exp Brain Res 138:251–257PubMedCrossRefGoogle Scholar
  25. 25.
    Nayate A, Bradshaw JL, Rinehart NJ (2005) Autism and Asperger’s disorder: Are they movement disorders involving the cerebellum and/or basal ganglia? Brain Res Bull 67(4):327–334PubMedCrossRefGoogle Scholar
  26. 26.
    Boyeson MG, Krobert KA (1992) Cerebellar norepinephrine infusions facilitate recovery after sensorimotor cortex injury. Brain Res Bull 29:435–439PubMedCrossRefGoogle Scholar
  27. 27.
    Krobert KA, Sutton RL, Feeney DM (1994) Spontaneous and amphetamine-evoked release of cerebellar noradrenaline after sensorimotor cortex contusion: an in vivo microdyalisis study in the awake rat. J Neurochem 62:2233–2240PubMedCrossRefGoogle Scholar
  28. 28.
    Gonzalez-Pina R, Bueno-Nava A, Montes S, Alfaro-Rodriguez A, Gonzalez-Maciel A, Reynoso-Robles R, Ayala-Guerrero F (2006) Pontine and cerebellar norepinephrine content in adult rats recovering from focal cortical injury. Neurochem Res 31(12):1443–1449PubMedCrossRefGoogle Scholar
  29. 29.
    Tepper JL, Weiss B, Cox C (1982) Microanalysis of ozone depression of motor activity. Toxicol Appl Pharmacol 64(2):317–326PubMedCrossRefGoogle Scholar
  30. 30.
    Dorado-Martinez C, Paredes-Carbajal C, Mascher D, Borgonio-Perez G, Rivas-Arancibia S (2001) Effects of different ozone doses on memory, motor activity and lipid peroxidation levels, in rats. Int J Neurosci 108(3–4):149–161PubMedCrossRefGoogle Scholar
  31. 31.
    Krishna MT, Springall D, Meng QH, Withers N, Macleod D, Biscione G, Frew A, Polak J, Holgate S (1997) Effects of ozone on epithelium and sensory nerves in the bronchial mucosa of healthy humans. Am J Respir Crit Care Med 3(Pt 1):943–950Google Scholar
  32. 32.
    Yeh HH, Woodward DJ (1983) Noradrenergic action in the developing rat cerebellum: interaction between norepinephrine and gamma-aminobutyric acid applied microiontophoretically to immature Purkinje cells. Brain Res 312(1):49–62PubMedGoogle Scholar
  33. 33.
    Yeh HH, Woodward DJ (1983) Noradrenergic action in the developing rat cerebellum: interaction between norepinephrine and synaptically-evoked responses of immature Purkinje cells. Brain Res 313(2):207–218PubMedGoogle Scholar
  34. 34.
    Goldstein LB, Coviello A, Miller GD, Davis JN (1991) Norepinephrine depletion impairs motor recovery following sensorimotor cortex injury in the rat. Restor Neurol Neurosci 3:41–47Google Scholar
  35. 35.
    Goldstein LB (2000) Effects of amphetamines and small related molecules on recovery after stroke in animals and man. Neurophramacology 39:852–859CrossRefGoogle Scholar
  36. 36.
    Maura G, Raiteri M (1996) Serotonin 5-HT1D and 5-HT1A receptors respectively mediate inhibition of glutamate release and inhibition of cyclic GMP production in rat cerebellum in vitro. J Neurochem 66(1):203–209PubMedCrossRefGoogle Scholar
  37. 37.
    Gershon MD (2003) Plasticity in serotonin control mechanisms in the gut. Curr Opin Pharmacol 3(6):600–607PubMedCrossRefGoogle Scholar
  38. 38.
    Salvinelli F, Casale M, Paparo F, Persico AM, Zini C (2003) Subjective tinnitus, temporomandibular joint dysfunction, and serotonin modulation of neural plasticity: causal or casual triad? Med Hypotheses 61(4):446–448PubMedCrossRefGoogle Scholar
  39. 39.
    Ling L, Fuller DD, Bach KB, Kinkead R, Olson EB Jr, Mitchell GS (2001) Chronic intermittent hypoxia elicits serotonin-dependent plasticity in the central neural control of breathing. J Neurosci 21(14):5381–5388PubMedGoogle Scholar
  40. 40.
    Kojic L, Dyck RH, Gu Q, Douglas RM, Matsubara J, Cynader MS (2000) Columnar distribution of serotonin-dependent plasticity within kitten striate cortex. Proc Natl Acad Sci 97(4):1841–1844PubMedCrossRefGoogle Scholar
  41. 41.
    Kennedy CH, Hatch GE, Slade R, Mason RP (1992) Application of EPR spin-trapping technique to the detection of radicals produced in vivo during inhalation exposure of rats to ozone. Toxicol Appl Pharmacol 114:41–46PubMedCrossRefGoogle Scholar
  42. 42.
    Gonzalez-Pina R, Alfaro-Rodriguez A, Castorena-Maldonado A, Morales-Martinez JJ (2002) Acute administration of alpha-tocopherol protects from ozone-induced changes in rat striatal catecholamine levels. Proc West Pharmacol Soc 45:59–61PubMedGoogle Scholar
  43. 43.
    Sofic E, Denisova N, Youdim K, Vatrenjak-Velagic V, De Filippo C, Mehmedagic A, Causevic A, Cao G, Joseph JA, Prior RL (2001) Antioxidant and pro-oxidant capacity of catecholamines and related compounds. Effects of hydrogen peroxide on glutathione and sphingomyelinase activity in pheochromocytoma PC12 cells: potential relevance to age-related diseases. J Neural Transm 108(5):541–557PubMedCrossRefGoogle Scholar
  44. 44.
    Rivas-Arancibia S, Dorado-Martinez C, Colin-Barenque L, Kendrick KM, de la Riva C, Guevara-Guzman R (2003) Effect of acute ozone exposure on locomotor behavior and striatal function. Pharmacol Biochem Behav 74(4):891–900PubMedCrossRefGoogle Scholar
  45. 45.
    Paz C, Huitron-Resendiz S (1996) The effects of ozone exposure on the sleep–wake cycle and serotonin contents in the pons of the rat. Neurosci Lett 204(1–2):49–52PubMedCrossRefGoogle Scholar
  46. 46.
    Bravo H, Roy-Ocotla G, Sánchez P, Torres R (1991) Contaminación atmosférica por ozono en la zona metropolitana de la ciudad de México: evolución histórica y perspectivas. Rev Coord Gral Estud Posgrad –23:39–48Google Scholar
  47. 47.
    Hackney JD, Linn WS, Karuza SK, Buckley RD, Pedersen EE, Law DC, Bates DV, Hazucha M, Pengelly LD, Silverman F (1977) Effects of ozone exposure in Canadians and southern Californians. Arch Environ Health 32:110–116PubMedGoogle Scholar
  48. 48.
    Andikyan VM, Voloshchuk IN, Kovganko PA, Clemente JM (2001) Morphofunctional changes in the placenta after ozone therapy. Bull Exp Biol Med 130: 715–718CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Rigoberto Gonzalez-Pina
    • 1
  • Carmen Escalante-Membrillo
    • 2
  • Alfonso Alfaro-Rodriguez
    • 3
  • Angelica Gonzalez-Maciel
    • 4
  1. 1.Laboratorio de NeuroplasticidadInstituto Nacional de RehabilitacionMexico CityMexico
  2. 2.Instituto Nacional de Neurologia y Neurocirugia MVSMexico CityMexico
  3. 3.Laboratorio de NeuroquimicaInstituto Nacional de RehabilitacionMexico CityMexico
  4. 4.Laboratorio de Microscopia ElectronicaInstituto Nacional de PediatriaMexico CityMexico

Personalised recommendations