Neurochemical Research

, Volume 32, Issue 11, pp 1927–1931 | Cite as

Morphological Alteration of Golgi Apparatus and Subcellular Compartmentalization of TGF-β1 in Golgi Apparatus in Gerbils Following Transient Forebrain Ischemia

  • Zhiping Hu
  • Liuwang Zeng
  • Lesi Xie
  • Wei Lu
  • Jie Zhang
  • Ting Li
  • Xiang Wang
Original Paper

Abstract

Golgi apparatus (GA) is a very important organelle involved in the metabolism of numerous proteins. TGF-β1 plays an important role in supporting neuronal survival after ischemic insults. Little is known, however, about the morphological alteration of GA and subcellular compartmentalization of TGF-β1 in brain after ischemia. Therefore, our present study was designed to check for GA morphological alterations and TGF-β1 subcellular localization. GA immunoreactivities were examined in the somatosensory cortex of gerbils after 10 min transient forebrain ischemia. Confocal Immunofluorographs of TGF-β1 and TGN38 were also taken. Results indicated that no fragmentation of GA was found in gerbils of norm, shams and 6, 24 and 72 h postocclusion, but some of the cortical cells showed fragmentation of GA in gerbils 7 days postocclusion. TGF-β1 was colocalized with TGN38, a marker molecule for the GA. We conclude that there was morphological alterations of GA and TGF-β1 was present in GA in the somatosensory cortex after 10 min ischemia.

Keywords

TGF-β1 Golgi apparatus (GA) Gerbils 

References

  1. 1.
    Fujita Y, Okamoto K (2005) Golgi apparatus of the motor neurons in patients with amyotrophic lateral sclerosis and in mice models of amyotrophic lateral sclerosis. Neuropathology 25:388–394PubMedCrossRefGoogle Scholar
  2. 2.
    Stieber A, Chen Y, Wei S et al (1998) The fragmented neuronal Golgi apparatus in amyotrophic lateral sclerosis includes the trans-Golgi-network: functional implications. Acta Neuropathol (Berl) 95:245–253CrossRefGoogle Scholar
  3. 3.
    Fujita Y, Ohama E, Takatama M et al (2006) Fragmentation of Golgi apparatus of nigral neurons with alpha-synuclein-positive inclusions in patients with Parkinson’s disease. Acta Neuropathol (Berl) 112:261–265CrossRefGoogle Scholar
  4. 4.
    Lee HJ, Khoshaghideh F, Lee S et al (2006) Impairment of microtubule-dependent trafficking by overexpression of alpha-synuclein. Eur J Neurosci 24:3153–3162PubMedCrossRefGoogle Scholar
  5. 5.
    Sakurai A, Okamoto K, Fujita Y et al (2000) Fragmentation of the Golgi apparatus of the ballooned neurons in patients with corticobasal degeneration and Creutzfeldt-Jakob disease. Acta Neuropathol (Berl) 100:270–274CrossRefGoogle Scholar
  6. 6.
    Gonatas NK, Gonatas JO, Stieber A (1998) The involvement of the Golgi apparatus in the pathogenesis of amyotrophic lateral sclerosis, Alzheimer’s disease, and ricin intoxication. Histochem Cell Biol 109:591–600PubMedCrossRefGoogle Scholar
  7. 7.
    Heine UI, Burmester JK, Flanders KC et al (1991) Localization of transforming growth factor-beta 1 in mitochondria of murine heart and liver. Cell Regul 2:467–477PubMedGoogle Scholar
  8. 8.
    Roth-Eichhorn S, Kuhl K, Gressner AM (1998) Subcellular localization of (latent) transforming growth factor beta and the latent TGF-beta binding protein in rat hepatocytes and hepatic stellate cells. Hepatology 28:1588–1596PubMedCrossRefGoogle Scholar
  9. 9.
    Miyazono K, Thyberg J, Heldin CH (1992) Retention of the transforming growth factor-beta 1 precursor in the Golgi complex in a latent endoglycosidase H-sensitive form. J Biol Chem 267:5668–5675PubMedGoogle Scholar
  10. 10.
    Mizoi T, Ohtani H, Miyazono K et al (1993) Immunoelectron microscopic localization of transforming growth factor beta 1 and latent transforming growth factor beta 1 binding protein in human gastrointestinal carcinomas: qualitative difference between cancer cells and stromal cells. Cancer Res 53:183–190PubMedGoogle Scholar
  11. 11.
    Chen W, Jin W, Tian H et al (2001) Requirement for transforming growth factor beta1 in controlling T cell apoptosis. J Exp Med 194:439–453PubMedCrossRefGoogle Scholar
  12. 12.
    Specht H, Peterziel H, Bajohrs M et al (2003) Transforming growth factor beta2 is released from PC12 cells via the regulated pathway of secretion. Mol Cell Neurosci 22:75–86PubMedCrossRefGoogle Scholar
  13. 13.
    Luzio JP, Brake B, Banting G et al (1990) Identification, sequencing and expression of an integral membrane protein of the trans-Golgi network (TGN38). Biochem J 270:97–102PubMedGoogle Scholar
  14. 14.
    Lin CS, Polsky K, Nadler JV et al (1990) Selective neocortical and thalamic cell death in the gerbil after transient ischemia. Neuroscience 35:289–299PubMedCrossRefGoogle Scholar
  15. 15.
    Rosamond W, Flegal K, Friday G et al (2007) Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 115:e69–e171PubMedCrossRefGoogle Scholar
  16. 16.
    Rosamond WD, Folsom AR, Chambless LE et al (1999) Stroke incidence and survival among middle-aged adults: 9-year follow-up of the Atherosclerosis Risk in Communities (ARIC) cohort. Stroke 30:736–743PubMedGoogle Scholar
  17. 17.
    Ramamohan PY, Gourie-Devi M, Nalini A et al (2007) Cerebrospinal fluid from amyotrophic lateral sclerosis patients causes fragmentation of the Golgi apparatus in the neonatal rat spinal cord. Amyotroph Lateral Scler 8:79–82PubMedCrossRefGoogle Scholar
  18. 18.
    Morgado-Diaz JA, Montesano G, De Souza Fernandes S et al (2007) Golgi complex disassembly caused by light-activated Calphostin C involves MAPK and PKA. Tissue Cell Apr 3Google Scholar
  19. 19.
    Mukherjee S, Chiu R, Leung SM et al (2007) Fragmentation of the Golgi apparatus: an early apoptotic event independent of the cytoskeleton. Traffic 8:369–378PubMedCrossRefGoogle Scholar
  20. 20.
    Martin LJ, Brambrink AM, Price AC et al (2000) Neuronal death in newborn striatum after hypoxia-ischemia is necrosis and evolves with oxidative stress. Neurobiol Dis 7:169–191PubMedCrossRefGoogle Scholar
  21. 21.
    Hu BR, Martone ME, Jones YZ et al (2000) Protein aggregation after transient cerebral ischemia. J Neurosci 20:3191–3199PubMedGoogle Scholar
  22. 22.
    Blobe GC, Schiemann WP, Lodish HF et al (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358PubMedCrossRefGoogle Scholar
  23. 23.
    Dhandapani KM, Brann DW (2003) Transforming growth factor-beta: a neuroprotective factor in cerebral ischemia. Cell Biochem Biophys 39:13–22PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu Y, Yang GY, Ahlemeyer B et al (2002) Transforming growth factor-beta 1 increases bad phosphorylation and protects neurons against damage. J Neurosci 22:3898–3909PubMedGoogle Scholar
  25. 25.
    Williams AO, Knapton AD, Geiser A (1996) The liver in transforming growth factor-Beta-1 (TGF-beta 1) null mutant mice. Ultrastruct Pathol 20:477–490PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Zhiping Hu
    • 1
  • Liuwang Zeng
    • 1
  • Lesi Xie
    • 2
  • Wei Lu
    • 1
  • Jie Zhang
    • 1
  • Ting Li
    • 1
  • Xiang Wang
    • 1
  1. 1.Department of Neurology, Second Xiangya HospitalCentral South UniversityChangshaChina
  2. 2.Department of Anatomy, Xiangya School of MedicineCentral South UniversityChangshaChina

Personalised recommendations