Skip to main content

Advertisement

Log in

Metabolic and Antioxidant System Alterations in an Astrocytoma Cell Line Challenged with Mitochondrial DNA Deletion

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Oxidative stress can induce mitochondrial dysfunction, mitochondrial DNA (mtDNA) depletion, and neurodegeneration, although the underlying mechanisms are poorly understood. The major mitochondrial antioxidant system that protects cells consists of manganese superoxide dismutase (MnSOD), glutathione peroxidase (GPx) and glutathione (GSH). To investigate the putative adaptive changes in antioxidant enzyme protein expression and targeting to mitochondria as mtDNA depletion occurs, we progressively depleted U87 astrocytoma cells of mtDNA by chronic treatment with ethidium bromide (EB, 50 ng/ml). Cellular MnSOD protein expression was markedly increased in a time-related manner while that of GPx showed time-related decreases. The mtDNA depletion also altered targeting or subcellular distribution of GPx, suggesting the importance of intact mtDNA in mitochondrial genome-nuclear genome signaling/communication. Cellular NADP+-ICDH activity also showed marked, time-related increases while their GSH content decreased. Thus, our findings suggest that interventions to elevate MnSOD, GPx, NADP+-ICDH, and GSH levels may protect brain cells from oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AD:

Alzheimer’s disease

AZT:

Azidothymidine

BCA:

Bicinchoninic acid

BSA:

Bovine serum albumin

DMEM:

Dulbecco’s modified essential medium

ETC:

Electron transport chain

EB:

Ethidium bromide

GPx:

Glutathione peroxidase

GSH:

Glutathione

HEPES:

N-2 hydroxyethylpiperazine-N`-2 ethane sulfonic acid

ICDH:

Isocitrate dehydrogenase

LDH:

Lactate dehydrogenase

MnSOD:

Manganese superoxide dismutase

mtDNA:

Mitochondrial DNA

NADP+ :

Nicotinamide adenine dinucleotide phosphate

nDNA:

Nuclear DNA

PVDF:

Polyvinylidene fluoride

PD:

Parkinson’s disease

ROS:

Reactive oxygen species

SDS:

Sodium dodecyl sulfate

TCA:

Tricarboxylic acid

U87:

A human astrocytoma cell line

References

  1. Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, Mizuno Y, Ozawa T (1990) Increase in deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170(3):1044–1048

    Article  PubMed  CAS  Google Scholar 

  2. Copeland WC (2002) Mitochondrial DNA Methods and Protocols. Methods Mol Biol 197:5–58

    Google Scholar 

  3. Zeviani M, Moraes CT, DiMauro S, Nakase H, Bonilla E, Schon EA, Rowland LP (1988) Deletions of mitochondrial DNA in Kearns–Sayre syndrome. Neurology 38:1339–1346

    PubMed  CAS  Google Scholar 

  4. Nekhaeva E, Bodyyak ND, Kraytsberg Y, McGrath SB, Van Orsouw NJ, Pluzhnikoy A, Wei JY, Vijg J, Khrapko K (2002) Clonally expanded mtDNA mutations are abundant in individual cells of human tissues. Proc Natl Acad Sci USA 99:5521–5526

    Article  PubMed  CAS  Google Scholar 

  5. Arnaudo E, Dalakas M, Shanske S, Moraes CT, DiMauro S, Schon EA (1991) Depletion of mtDNA in AIDS patients with zidovudine-induced myopathy. Lancet 337:508–510

    Article  PubMed  CAS  Google Scholar 

  6. Schapira AH, Copper JM, Dexter D, Clark JB, Jenner P, Marsden CD (1990) Mitochondrial complex I deficiency in Parkinson’s disease. J Neurochem 54:823–827

    Article  PubMed  CAS  Google Scholar 

  7. Jenner P, Dexter DT, Sian J, Shapira AH, Marsden CD (1992) Oxidative stress as a cause of nigral cell death in Parkinson’s disease and incidental Lewy body disease. The royal kings and queen’s parkinson’s disease research group. Ann Neurol 32:S82–S87

    Article  PubMed  CAS  Google Scholar 

  8. Heales SJ, Bolanos JP (2002) Impairment of brain mitochondrial function by reactive nitrogen species. The role of glutathione in dictating susceptibility. Neurochem Int 40:469–474

    Article  PubMed  CAS  Google Scholar 

  9. Bolanos JP, Almeida A, Stewart V, Peachen S, Land JM, Clark JB, Heales SJ (1997) Nitric oxide mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases. J Neurochem 68(6):2227–2240

    Article  PubMed  CAS  Google Scholar 

  10. Heales SJ, Lam AA, Duncan AJ, Land JM (2004) Neurodegeneration or Neuroprotection: The pivotal Role of Astrocytes. Neurochem Res 29(3):513–519

    Article  PubMed  CAS  Google Scholar 

  11. Torreilles F, Salman-Tabcheh S, Guerin M, Torreilles J (1999) Neurodegenerative disorders: the role of peroxynitrite. Brain Res Rev 30:153–163

    Article  PubMed  CAS  Google Scholar 

  12. Estevez AG, Jordan J (2002) Nitric oxide and superoxide, a deadly cocktail. Ann NY Acad Sci 962:207–211

    Article  PubMed  CAS  Google Scholar 

  13. Smith MA, Richey Harris PL, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimers disease. J Neurosci 17:2653–2657

    PubMed  CAS  Google Scholar 

  14. Vodovoltz Y, Lucia MS, Flanders KC, Chesler L, Xie OW, Smith TW, Weidner J, Mumford R, Webber R, Nathan C, Roberts AB, Lippa CF, Sporn MB (1996) Inducible nitric oxide synthase in tangle-bearing neurons of patients with Alzheimers disease. J Exp Med 184:1425–1433

    Article  Google Scholar 

  15. Kish SJ, Bergon C, Rajput A, Dozic S, Mastrogiacomo E, Chang LJ, Wilson JM, Distefano LM, Nobrega JN (1992) Brain cytochrome oxidase in Alzheimer’s disease. J Neurochem 59:776–779

    Article  PubMed  CAS  Google Scholar 

  16. Casley CS, Canevari L, Land JM, Clark JB, Sharpe MA (2002) Beta-amyloid inhibits integrated mitochondrial respiration and key enzyme activities. J Neurochem 80:91–100

    Article  PubMed  CAS  Google Scholar 

  17. Wallace DC (1992) Mitochondrial diseases in man and mouse. Science 283(5407):1482–1488

    Article  Google Scholar 

  18. Bandy B, Davidson AJ (1990) Mitochondrial mutations may increase oxidative stress: implications for carcinogenesis and aging? Free radicals Biol Med 8(6):523–539

    Article  CAS  Google Scholar 

  19. Vogel R, Wiesinger H, Hamprecht B, Dringen R (1999) The regeneration of reduced gluthathione in rat forebrain mitochondria identifies metabolic pathways providing the NADPH required. Neurosci Lett 275:97–100

    Article  PubMed  CAS  Google Scholar 

  20. Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, Song BJ, Huh TL, Huh TL (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276:16168–16176

    Article  PubMed  CAS  Google Scholar 

  21. Munich T, Yokota S, Dringen R (2003) Cytosolic and mitochondrial isoforms of NADP+-dependent isocitrate dehydrogenases are expressed in cultured rat neurons, astrocytes, oligodenrocytes and microgial cells. J Neurochem 86:605–614

    Article  CAS  Google Scholar 

  22. Halliwell B, Gutteridge JM (1999) Antioxidant defenses. Free radicals in biology and medicine, 3rd edn. Clarendon Press, Oxford, pp 200–216

    Google Scholar 

  23. Sun J, Folk D, Bradley T, Tower J (2004) Induced over-expression of mitochondrial MnSOD extends life span of adult Drosophila melanogaster. Genetics 161:661–672

    Google Scholar 

  24. Li Y, Huang T, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995) Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat Genet 11:376–381

    Article  PubMed  CAS  Google Scholar 

  25. Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (2003) Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging. Physiol Genomics 16:29–37

    Article  PubMed  CAS  Google Scholar 

  26. Hinerfeld D, Traini MD, Weinberger RP, Cochran B, Doctrow SR, Harry J, Melov S (2004) Endogenous mitochondrial oxidative stress: neurodegeneration, proteomic analysis, speficic respiratory chain defects, and efficacious antioxidant therapy in superoxide dismutase 2 null mice. J Neurochem 88:657–667

    Article  PubMed  CAS  Google Scholar 

  27. Melov S, Doctrow SR, Schneider JA, Haberson J, Patel M, Coskun PE, Huffman K, Wallace DC, Malfroy B (2001) Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J Neurosci 21:8348–8353

    PubMed  Google Scholar 

  28. Hoehn B, Yenari MA, Sapolsky RM, Steinberg GK (2003) Glutathione peroxidase overexpression inhibits cytochrome C release and proapoptotic mediators to protect neurons from experimental stroke. Stroke 34(10):2489–2494

    Article  PubMed  CAS  Google Scholar 

  29. King MP, Attardi G (1989) Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246:500–503

    Article  PubMed  CAS  Google Scholar 

  30. Lai JC, Walsh JM, Dennis SC, Clark JB (1977) Synaptic and non-synaptic mitochondria from rat brain: isolation and characterization. J Neurochem 28(3):625–631

    Article  PubMed  CAS  Google Scholar 

  31. Griffith OW (1980) Determination of Glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  PubMed  CAS  Google Scholar 

  32. Clark JB, Lai JC (1989) Glycolytic, Tricarboxylic acid cycle and related enzymes in brain. In: Boulton AA, Baker GB, Butterworth RF (eds) Neuromethods, vol 11. Humana press, Clifton NJ, pp 233–281

    Google Scholar 

  33. Chan PH (1996) Role of oxidants in ischemic brain damage. Stroke 27:1124–1129

    PubMed  CAS  Google Scholar 

  34. Hudson EK, Hogue BA, Souza-Pinto NC, Croteau DL, Anson RM, Bohr VA, Hansford RG (1998) Age-associated change in mitochondrial DNA damage. Free Radic Res 29(6):573–579

    Article  PubMed  CAS  Google Scholar 

  35. Murakami K, Kondo T, Kawase M, Li Y, Sato S, Chen SF, Chan PH (1998) Mitochondrial susceptibility to oxidative stress exacerbates cerebral infarction that follows permanent focal cerebral ischemia in mutant mice with manganese superoxide dismutase deficiency. J Neurosci 18:205–213

    PubMed  CAS  Google Scholar 

  36. Stuart JA, Hashiguchi K, Wilson III DM, Copeland WC, Souza-Pinto NC, Bohr VA (2004) DNA base excision repair activities and pathway function in mitochondrial and cellular lysates from cells lacking mitochondrial DNA. Nucleic Acids Res 32(7):2181–2192

    Article  PubMed  CAS  Google Scholar 

  37. Wallace DC (2002) Animal models for mitochondrial disease. In: Copeland WC (ed) Mitochondrial DNA: methods & protocols, vol 197. Humana Press, Totowa, NJ, pp 3–54

    Google Scholar 

  38. Desjardins P, Frost E, Morais R (1985) Ethidium bromide-induced loss of mitochondrial DNA from primary chicken embryo fibroblasts. Mol Cell Biol 5:1163–1169

    PubMed  CAS  Google Scholar 

  39. Wiseman A, Attardi G (1978) Reversible tenfold reduction in mitochondria DNA content of human cells treated with ethidium bromide. Mol Gen Genet 167:51–63

    PubMed  CAS  Google Scholar 

  40. Attardi G, Shatz G (1988) Biogenesis of mitochondria. Ann Rev Cell Biol 4:289–333

    PubMed  CAS  Google Scholar 

  41. Liao X, Butow RA (1993) RTG1 and RTG2: two yeast genes required for a novel path of communication from mitochondria to the nucleus. Cell 72:61–71

    Article  PubMed  CAS  Google Scholar 

  42. Parikh VS, Morgan MM, Scott R, Clements LS, Butow RA (1987) The mitochondrial genotype can influence nuclear gene expression in yeast. Science 235:576–580

    Article  PubMed  CAS  Google Scholar 

  43. Davis AF, Ropp PA, Clayton DA, Copeland WC (1996) Mitochondrial DNA polymerase gamma is expressed and translated in the absence of mitochondrial DNA maintenance and replication. Nucleic Acids Res 24(14):2753–2759

    Article  PubMed  CAS  Google Scholar 

  44. Votyakova TV, Reynolds IJ (2001) DeltaPsi(m)-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J Neurochem 79(2):266–277

    Article  PubMed  CAS  Google Scholar 

  45. Loschen G, Azzi A, Flohe L (1973) Mitochondrial H2O2 formation at site II. Hoppe Seylers Z Physiol Chem 354(7):791–794

    PubMed  CAS  Google Scholar 

  46. Sipos I, Tretter L, Adam-Vizi V (2003) Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals. J Neurochem 84(1):112–118

    Article  PubMed  CAS  Google Scholar 

  47. Bywood PT, Johnson SM (2003) Mitochondrial complex inhibitors preferentially damage substantia nigra dopamine neurons in rat brain slices. Exp Neurol 179:47–59

    Article  PubMed  CAS  Google Scholar 

  48. Ikebe S, Tanaka M, Ohno K, Sato W, Hattori K, Kondo T, Mizuno Y, Ozawa T (1990) Increase in deleted mitochondrial DNA in the striatum in Parkinson’s disease and senescence. Biochem Biophys Res Commun 170(3):1044–1048

    Article  PubMed  CAS  Google Scholar 

  49. Jo SH, Son MK, Koh HJ, Lee SM, Song IH, Kim YO, Lee YS, Jeong KS, Kim WB, Park JW, Song BJ, Huh TL (2001) Control of mitochondrial redox balance and cellular defense against oxidative damage by mitochondrial NADP+-dependent isocitrate dehydrogenase. J Biol Chem 276:16168–16176

    Article  PubMed  CAS  Google Scholar 

  50. Lee HJ, Yang SE, Park WJ (2003) Inactivation of NADP+-dependent isocitrate. dehydrogenase by peroxynitrite. Implications for cytotoxicity and alcohol-induced liver injury. J Biol Chem 278(51):51360–51371

    Article  PubMed  CAS  Google Scholar 

  51. Arai M, Imai H, Koumura T, Yoshida T, Emoto K, Umeda M, Chiba N, Nakagawa Y (1999) Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells. J Biol Chem 274:4924–4933

    Article  PubMed  CAS  Google Scholar 

  52. MacMillan-Crow LA, Crow JP, Kerby JD, Beckman JS, Thompson JA (1996) Nitration and inactivation of manganese superoxide dismutase in chronic rejection of human renal allografts. Proc Natl Acad Sci USA 93:11853–11858

    Article  PubMed  CAS  Google Scholar 

  53. Savvides SN, Scheiwein M, Bohme CC, Arteel GE, Karplus PA, Becker K, Schirmer RH (2002) Crystal structure of the antioxidant enzyme glutathione reductase inactivated by peroxynitrite. J Biol Chem 277:2779–2784

    Article  PubMed  CAS  Google Scholar 

  54. Dukhande VV, Malthankar-Phatak GH, Hugus JJ, Daniels CK, Lai JC (2006) manganese-induced neurotoxicity is differentially enhanced by glutathione depletion in astrocytoma and neuroblastoma cells. Neurochem Res 31(11):1349–1357

    Article  PubMed  CAS  Google Scholar 

  55. Pong K, Doctrow SR, Baudry M (2000) Prevention of 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons. Brain Res 881:182–189

    Article  PubMed  Google Scholar 

  56. Isaac AO, Kawikova I, Bothwell AL, Daniels CK, Lai JC (2006) Manganese Treatment modulates the expression of peroxisome proliferator-activated receptors in astrocytoma and neuroblastoma cells. Neurochem Res 31(11):1305–1316

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Our studies were supported by a grant from Idaho Biomedical Research Infrastructure Network (NIH NCRR BRINIP20RR016454), and a small project grant from the Mountain States Tumor and Medical Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. K. Lai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Isaac, A.O., Dukhande, V.V. & Lai, J.C.K. Metabolic and Antioxidant System Alterations in an Astrocytoma Cell Line Challenged with Mitochondrial DNA Deletion. Neurochem Res 32, 1906–1918 (2007). https://doi.org/10.1007/s11064-007-9380-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-007-9380-3

Keywords

Navigation