Advertisement

Neurochemical Research

, Volume 32, Issue 12, pp 2023–2031 | Cite as

What’s Behind the Decline? The Role of White Matter in Brain Aging

  • Jason D. Hinman
  • Carmela R. AbrahamEmail author
Original Paper

Abstract

The specific molecular events that underlie the age-related loss of cognitive function are poorly understood. Although not experimentally substantiated, age-dependent neuronal loss has long been considered central to age-related cognitive decline. More recently, age-related changes in brain white matter have taken precedence in explaining the steady decline in cognitive domains seen in non-diseased elderly. Characteristic alterations in the ultrastructure of myelin coupled with evidence of inflammatory processes present in the white matter of several different species suggest that specific molecular events within brain white matter may better explain observed pathological changes and cognitive deficits. This review focuses on recent evidence highlighting the importance of white matter in deciphering the course of “normal” brain aging.

Keywords

Age-related cognitive decline Myelin Oligodendrocyte Calpain CNP 

Abbreviations

ARCD

Age-related cognitive decline

AD

Alzheimer’s disease

PD

Parkinson’s disease

MRI

Magnetic resonance imaging

FA

Fractional anisotropy

R2

Transverse relaxation rates

CNS

Central nervous system

NFT

Neurofibrillary tangle

iNOS

Inducible nitric oxide synthase

MHC

Major histocompatibility complex

CAOs

Complement activated oligodendrocytes

C3aR

Complement C3a receptor

PNS

Peripheral nervous system

GFAP

Glial acidic fibrillary protein

ACT

α1-Antichymotrypsin

MBP

Myelin basic protein

PLP

Proteolipid protein

MAG

Myelin-associated glycoprotein

CNP

2’,3’ Cyclic nucleotide phosphodiesterase

MOSP

Myelin oligodendrocyte specific protein

EAE

Experimental allergic encephalomyelitis

MS

Multiple sclerosis

Notes

Acknowledgments

The authors thank our fellow collaborators in the Aging Program Project (NIA AG00001) particularly Drs. Peters, Rosene, Moss, Leubke, Hollander, Duce, and Chen.

References

  1. 1.
    Abraham CR (2001) Reactive astrocytes and alpha1-antichymotrypsin in Alzheimer‘s disease. Neurobiol Aging 22(6):931–936PubMedCrossRefGoogle Scholar
  2. 2.
    Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer‘s disease. Cell 52(4):487–501PubMedCrossRefGoogle Scholar
  3. 3.
    Albert M (1993a) Neuropsychological and neurophysiological changes in healthy adult humans across the age range. Neurobiol Aging 14(6):623–625PubMedCrossRefGoogle Scholar
  4. 4.
    Albert MS (1993b) Neuropsychological and neurophysiological changes in healthy adult humans across the age range. Neurobiology Aging 14:623–625CrossRefGoogle Scholar
  5. 5.
    Anderson JM, Hubbard BM, Coghill GR, Slidders W (1983) The effect of advanced old age on the neurone content of the cerebral cortex. Observations with an automatic image analyser point counting method. J Neurol Sci 58(2):235–246PubMedCrossRefGoogle Scholar
  6. 6.
    Ansari KA, Loch J (1975) Decreased myelin basic protein content of the aged human brain. Neurology 25(11):1045–1050PubMedGoogle Scholar
  7. 7.
    Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J (2001) Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry 58(5):461–465PubMedCrossRefGoogle Scholar
  8. 8.
    Bartzokis G, Cummings JL, Sultzer D, Henderson VW, Nuechterlein KH, Mintz J (2003) White matter structural integrity in healthy aging adults and patients with Alzheimer disease: a magnetic resonance imaging study. Arch Neurol 60(3):393–398PubMedCrossRefGoogle Scholar
  9. 9.
    Berlet HH, Volk B (1980) Studies of human myelin proteins during old age. Mech Ageing Dev 14(1–2):211–222PubMedCrossRefGoogle Scholar
  10. 10.
    Boos L, Campbell IL, Ames R, Wetsel RA, Barnum SR (2004) Deletion of the complement anaphylatoxin C3a receptor attenuates, whereas ectopic expression of C3a in the brain exacerbates, experimental autoimmune encephalomyelitis. J Immunol 173(7):4708–4714PubMedGoogle Scholar
  11. 11.
    Brayne C, Gill C, Paykel ES, Huppert F, O’Connor DW (1995) Cognitive decline in an elderly population–a two wave study of change. Psychol Med 25(4):673–683PubMedCrossRefGoogle Scholar
  12. 12.
    Brayne C, Spiegelhalter DJ, Dufouil C, Chi LY, Dening TR, Paykel ES, O’Connor DW, Ahmed A, McGee MA, Huppert FA (1999) Estimating the true extent of cognitive decline in the old old. J Am Geriatr Soc 47(11):1283–1288PubMedGoogle Scholar
  13. 13.
    Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J Comp Neurol 102(2):511–516PubMedCrossRefGoogle Scholar
  14. 14.
    Chen C, Duce JA, Hollander W, Rosene DL, Abraham CR Age-related changes in gene expression in area 46 of the aged rhesus monkey (in preparation)Google Scholar
  15. 15.
    Cork LC (1993) Plaques in prefrontal cortex of aged, behaviorally-tested rhesus monkeys: incidence, distribution, and relationship to task performance. Neurobiol Aging 14(6):675–676PubMedCrossRefGoogle Scholar
  16. 16.
    Cragg BG (1975) The density of synapses and neurons in normal, mentally defective ageing human brains. Brain 98(1):81–90PubMedCrossRefGoogle Scholar
  17. 17.
    Cullum S, Huppert FA, McGee M, Dening T, Ahmed A, Paykel ES, Brayne C (2000) Decline across different domains of cognitive function in normal ageing: results of a longitudinal population-based study using CAMCOG. Int J Geriatr Psychiatry 15(9):853–862PubMedCrossRefGoogle Scholar
  18. 18.
    Cummings JL (2004) Alzheimer’s disease. N Engl J Med 351(1):56–67PubMedCrossRefGoogle Scholar
  19. 19.
    Deary IJ, Leaper SA, Murray AD, Staff RT, Whalley LJ (2003) Cerebral white matter abnormalities and lifetime cognitive change: a 67-year follow-up of the Scottish Mental Survey of 1932. Psychol Aging 18(1):140–148PubMedCrossRefGoogle Scholar
  20. 20.
    Devaney KO, Johnson HA (1980) Neuron loss in the aging visual cortex of man. J Gerontol 35(6):836–841PubMedGoogle Scholar
  21. 21.
    Dickson DW, Wertkin A, Kress Y, Ksiezak-Reding H, Yen SH (1990) Ubiquitin immunoreactive structures in normal human brains. Distribution and developmental aspects. Lab Invest 63(1):87–99PubMedGoogle Scholar
  22. 22.
    Eddleston M, Mucke L (1993) Molecular profile of reactive astrocytes-implications for their role in neurologic disease. Neuroscience 54(1):15–36PubMedCrossRefGoogle Scholar
  23. 23.
    Fang S, Weissman AM (2004) A field guide to ubiquitylation. Cell Mol Life Sci 61(13):1546–1561PubMedCrossRefGoogle Scholar
  24. 24.
    Ferrer I, Pumarola M, Rivera R, Zujar MJ, Cruz-Sanchez F, Vidal A (1993) Primary central white matter degeneration in old dogs. Acta Neuropathol (Berl) 86(2):172–175CrossRefGoogle Scholar
  25. 25.
    Ferrie JC, Barantin L, Saliba E, Akoka S, Tranquart F, Sirinelli D, Pourcelot L (1999) MR assessment of the brain maturation during the perinatal period: quantitative T2 MR study in premature newborns. Magn Reson Imaging 17(9):1275–1288PubMedCrossRefGoogle Scholar
  26. 26.
    Finch CE (2003) Neurons, glia, and plasticity in normal brain aging. Neurobiol Aging 24(Suppl 1):S123–S127; Discussion S131Google Scholar
  27. 27.
    Goss JR, Finch CE, Morgan DG (1991) Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain. Neurobiol Aging 12(2):165–170PubMedCrossRefGoogle Scholar
  28. 28.
    Gravel M, Peterson J, Yong VW, Kottis V, Trapp B, Braun PE (1996) Overexpression of 2′,3′-cyclic nucleotide 3′-phosphodiesterase in transgenic mice alters oligodendrocyte development and produces aberrant myelination. Mol Cell Neurosci 7(6):453–466PubMedCrossRefGoogle Scholar
  29. 29.
    Guterman A, Glickman MH (2004) Deubiquitinating enzymes are IN/(trinsic to proteasome function). Curr Protein Pept Sci 5(3):201–211PubMedCrossRefGoogle Scholar
  30. 30.
    Guttmann CR, Jolesz FA, Kikinis R, Killiany RJ, Moss MB, Sandor T, Albert MS (1998) White matter changes with normal aging. Neurology 50(4):972–978PubMedGoogle Scholar
  31. 31.
    Haug H, Eggers R (1991) Morphometry of the human cortex cerebri and corpus striatum during aging. Neurobiol Aging 12(4):336–338; Discussion 352–335Google Scholar
  32. 32.
    Head D, Buckner RL, Shimony JS, Williams LE, Akbudak E, Conturo TE, McAvoy M, Morris JC, Snyder AZ (2004) Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cereb Cortex 14(4):410–423PubMedCrossRefGoogle Scholar
  33. 33.
    Hedden T, Gabrieli JD (2004) Insights into the ageing mind: a view from cognitive neuroscience. Nat Rev Neurosci 5(2):87–96PubMedCrossRefGoogle Scholar
  34. 34.
    Heilbroner PL, Kemper TL (1990) The cytoarchitectonic distribution of senile plaques in three aged monkeys. Acta Neuropathol (Berl) 81(1):60–65CrossRefGoogle Scholar
  35. 35.
    Henderson G, Tomlinson BE, Gibson PH (1980) Cell counts in human cerebral cortex in normal adults throughout life using an image analysing computer. J Neurol Sci 46(1):113–136PubMedCrossRefGoogle Scholar
  36. 36.
    Hinman JD, Duce JA, Siman RA, Hollander W, Abraham CR (2004) Activation of calpain-1 in myelin and microglia in the white matter of the aged rhesus monkey. J Neurochem 89(2):430–441PubMedCrossRefGoogle Scholar
  37. 37.
    Hinman JD, Peters A, Cabral H, Rosene DL, Hollander W, Rasband MN, Abraham CR (2006) Age-related molecular reorganization at the node of Ranvier. J Comp Neurol 495(4):351–362PubMedCrossRefGoogle Scholar
  38. 38.
    Ishibashi T, Dupree JL, Ikenaka K, Hirahara Y, Honke K, Peles E, Popko B, Suzuki K, Nishino H, Baba H (2002) A myelin galactolipid, sulfatide, is essential for maintenance of ion channels on myelinated axon but not essential for initial cluster formation. J Neurosci 22(15):6507–6514PubMedGoogle Scholar
  39. 39.
    Ishigami A, Ohsawa T, Hiratsuka M, Taguchi H, Kobayashi S, Saito Y, Murayama S, Asaga H, Toda T, Kimura N, Maruyama N (2005) Abnormal accumulation of citrullinated proteins catalyzed by peptidylarginine deiminase in hippocampal extracts from patients with Alzheimer’s disease. J Neurosci Res 80(1):120–128PubMedCrossRefGoogle Scholar
  40. 40.
    Jang JS, Choi YH (1999) Proteolytic degradation of the retinoblastoma family protein p107: a putative cooperative role of calpain and proteasome. Int J Mol Med 4(5):487–492PubMedGoogle Scholar
  41. 41.
    Kemper TL (1994) Neuroanatomical and neuropathological changes during aging and dementia. In: Alber ML, Knoefel JE (eds) Clinical neurology and aging. Oxford University Press, New York, Oxford, pp 3–67Google Scholar
  42. 42.
    Kim JK, Mastronardi FG, Wood DD, Lubman DM, Zand R, Moscarello MA (2003a) Multiple sclerosis: an important role for post-translational modifications of myelin basic protein in pathogenesis. Mol Cell Proteomics 2(7):453–462PubMedGoogle Scholar
  43. 43.
    Kim SJ, Sung JY, Um JW, Hattori N, Mizuno Y, Tanaka K, Paik SR, Kim J, Chung KC (2003b) Parkin cleaves intracellular alpha-synuclein inclusions via the activation of calpain. J Biol Chem 278(43):41890–41899PubMedCrossRefGoogle Scholar
  44. 44.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, Yokochi M, Mizuno Y, Shimizu N (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608PubMedCrossRefGoogle Scholar
  45. 45.
    Klingberg T, Vaidya CJ, Gabrieli JD, Moseley ME, Hedehus M (1999) Myelination and organization of the frontal white matter in children: a diffusion tensor MRI study. Neuroreport 10(13):2817–2821PubMedCrossRefGoogle Scholar
  46. 46.
    Knox CA, Kokmen E, Dyck PJ (1989) Morphometric alteration of rat myelinated fibers with aging. J Neuropathol Exp Neurol 48(2):119–139PubMedGoogle Scholar
  47. 47.
    Lai ZC, Moss MB, Killiany RJ, Rosene DL, Herndon JG (1995) Executive system dysfunction in the aged monkey: spatial and object reversal learning. Neurobiol Aging 16(6):947–954PubMedCrossRefGoogle Scholar
  48. 48.
    Lajtha A, Toth J, Fujimoto K, Agrawal HC (1977) Turnover of myelin proteins in mouse brain in vivo. Biochem J 164(2):323–329PubMedGoogle Scholar
  49. 49.
    Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, Griffiths IR, Nave KA (2003) Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nat Genet 33(3):366–374PubMedCrossRefGoogle Scholar
  50. 50.
    Logan JM, Sanders AL, Snyder AZ, Morris JC, Buckner RL (2002) Under-recruitment and nonselective recruitment: dissociable neural mechanisms associated with aging. Neuron 33(5):827–840PubMedCrossRefGoogle Scholar
  51. 51.
    Lowe J, Mayer RJ, Landon M (1993) Ubiquitin in neurodegenerative diseases. Brain Pathol 3(1):55–65PubMedGoogle Scholar
  52. 52.
    Makris N, Papadimitriou GM, van der Kouwe A, Kennedy DN, Hodge SM, Dale AM, Benner T, Wald LL, Wu O, Tuch DS, Caviness VS, Moore TL, Killiany RJ, Moss MB, Rosene DL (2006) Frontal connections and cognitive changes in normal aging rhesus monkeys: a DTI study. Neurobiol Aging 2006, Sep 6; [Epub ahead of print]Google Scholar
  53. 53.
    Marcus J, Honigbaum S, Shroff S, Honke K, Rosenbluth J, Dupree JL (2006) Sulfatide is essential for the maintenance of CNS myelin and axon structure. Glia 53(4):372–381PubMedCrossRefGoogle Scholar
  54. 54.
    Marner L, Nyengaard JR, Tang Y, Pakkenberg B (2003) Marked loss of myelinated nerve fibers in the human brain with age. J Comp Neurol 462(2):144–152PubMedCrossRefGoogle Scholar
  55. 55.
    Migheli A, Attanasio A, Pezzulo T, Gullotta F, Giordana MT, Schiffer D (1992) Age-related ubiquitin deposits in dystrophic neurites: an immunoelectron microscopic study. Neuropathol Appl Neurobiol 18(1):3–11PubMedGoogle Scholar
  56. 56.
    Mouton PR, Long JM, Lei DL, Howard V, Jucker M, Calhoun ME, Ingram DK (2002) Age and gender effects on microglia and astrocyte numbers in brains of mice. Brain Res 956(1):30–35PubMedCrossRefGoogle Scholar
  57. 57.
    Nakanishi H (2003) Microglial functions and proteases. Mol Neurobiol 27(2):163–176PubMedCrossRefGoogle Scholar
  58. 58.
    Nicholas AP, Sambandam T, Echols JD, Tourtellotte WW (2004) Increased citrullinated glial fibrillary acidic protein in secondary progressive multiple sclerosis. J Comp Neurol 473(1):128–136PubMedCrossRefGoogle Scholar
  59. 59.
    Nichols NR, Day JR, Laping NJ, Johnson SA, Finch CE (1993) GFAP mRNA increases with age in rat and human brain. Neurobiol Aging 14(5):421–429PubMedCrossRefGoogle Scholar
  60. 60.
    Ohkawa K, Asakura T, Takada K, Sawai T, Hashizume Y, Okawa Y, Yanaihara N (1999) Calpain inhibitor causes accumulation of ubiquitinated P-glycoprotein at the cell surface: possible role of calpain in P-glycoprotein turnover. Int J Oncol 15(4):677–686PubMedGoogle Scholar
  61. 61.
    O’Sullivan M, Jones DK, Summers PE, Morris RG, Williams SC, Markus HS (2001) Evidence for cortical “disconnection“ as a mechanism of age-related cognitive decline. Neurology 57(4):632–638PubMedGoogle Scholar
  62. 62.
    Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384(2):312–320PubMedCrossRefGoogle Scholar
  63. 63.
    Pakkenberg B, Pelvig D, Marner L, Bundgaard MJ, Gundersen HJ, Nyengaard JR, Regeur L (2003) Aging and the human neocortex. Exp Gerontol 38(1–2):95–99PubMedCrossRefGoogle Scholar
  64. 64.
    Park DC, Smith AD, Lautenschlager G, Earles JL, Frieske D, Zwahr M, Gaines CL (1996) Mediators of long-term memory performance across the life span. Psychol Aging 11(4):621–637PubMedCrossRefGoogle Scholar
  65. 65.
    Peters A (2002a) The effects of normal aging on myelin and nerve fibers: a review. J Neurocytol 31(8–9):581–593PubMedCrossRefGoogle Scholar
  66. 66.
    Peters A (2002b) Structural changes in the normally aging cerebral cortex of primates. Prog Brain Res 136:455–465PubMedCrossRefGoogle Scholar
  67. 67.
    Peters A, Leahu D, Moss MB, McNally KJ (1994) The effects of aging on area 46 of the frontal cortex of the rhesus monkey. Cereb Cortex 4(6):621–635PubMedCrossRefGoogle Scholar
  68. 68.
    Peters A, Morrison JH, Rosene DL, Hyman BT (1998a) Feature article: are neurons lost from the primate cerebral cortex during normal aging? Cereb Cortex 8(4):295–300PubMedCrossRefGoogle Scholar
  69. 69.
    Peters A, Moss MB, Sethares C (2000) Effects of aging on myelinated nerve fibers in monkey primary visual cortex. J Comp Neurol 419(3):364–376PubMedCrossRefGoogle Scholar
  70. 70.
    Peters A, Nigro NJ, McNally KJ (1997) A further evaluation of the effect of age on striate cortex of the rhesus monkey. Neurobiol Aging 18(1):29–36PubMedCrossRefGoogle Scholar
  71. 71.
    Peters A, Rosene DL, Moss MB, Kemper TL, Abraham CR, Tigges J, Albert MS (1996) Neurobiological bases of age-related cognitive decline in the rhesus monkey. J Neuropathol Exp Neurol 55(8):861–874PubMedGoogle Scholar
  72. 72.
    Peters A, Sethares C (2002) Aging and the myelinated fibers in prefrontal cortex and corpus callosum of the monkey. J Comp Neurol 442(3):277–291PubMedCrossRefGoogle Scholar
  73. 73.
    Peters A, Sethares C, Killiany RJ (2001) Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. J Comp Neurol 435(2):241–248PubMedCrossRefGoogle Scholar
  74. 74.
    Peters A, Sethares C, Moss MB (1998b) The effects of aging on layer 1 in area 46 of prefrontal cortex in the rhesus monkey. Cereb Cortex 8(8):671–684PubMedCrossRefGoogle Scholar
  75. 75.
    Rasband MN, Tayler J, Kaga Y, Yang Y, Lappe-Siefke C, Nave KA, Bansal R (2005) CNP is required for maintenance of axon-glia interactions at nodes of Ranvier in the CNS. Glia 50(1):86–90PubMedCrossRefGoogle Scholar
  76. 76.
    Resnick SM, Pham DL, Kraut MA, Zonderman AB, Davatzikos C (2003) Longitudinal magnetic resonance imaging studies of older adults: a shrinking brain. J Neurosci 23(8):3295–3301PubMedGoogle Scholar
  77. 77.
    Roher AE, Weiss N, Kokjohn TA, Kuo YM, Kalback W, Anthony J, Watson D, Luehrs DC, Sue L, Walker D, Emmerling M, Goux W, Beach T (2002) Increased A beta peptides and reduced cholesterol and myelin proteins characterize white matter degeneration in Alzheimer’s disease. Biochemistry 41(37):11080–11090PubMedCrossRefGoogle Scholar
  78. 78.
    Rosene DL, Nicholson TJ (1999) Neurotransmitter receptor changes in the hippocampus and cerebral cortex in normal aging. Cereb Cortex 14:111–128Google Scholar
  79. 79.
    Salat DH, Tuch DS, Greve DN, van der Kouwe AJ, Hevelone ND, Zaleta AK, Rosen BR, Fischl B, Corkin S, Rosas HD, Dale AM (2005a) Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiol Aging 26(8):1215–1227PubMedCrossRefGoogle Scholar
  80. 80.
    Salat DH, Tuch DS, Hevelone ND, Fischl B, Corkin S, Rosas HD, Dale AM (2005b) Age-related changes in prefrontal white matter measured by diffusion tensor imaging. Ann NY Acad Sci 1064:37–49PubMedCrossRefGoogle Scholar
  81. 81.
    Sandell JH, Peters A (2002) Effects of age on the glial cells in the rhesus monkey optic nerve. J Comp Neurol 445(1):13–28PubMedCrossRefGoogle Scholar
  82. 82.
    Schaecher KE, Shields DC, Banik NL (2001) Mechanism of myelin breakdown in experimental demyelination: a putative role for calpain. Neurochem Res 26(6):731–737PubMedCrossRefGoogle Scholar
  83. 83.
    Schaie KW (1996) Intellectual development in adulthood: the Seattle longitudinal study. Cambridge University Press, CambridgeGoogle Scholar
  84. 84.
    Schwab C, McGeer PL (2002) Complement activated C4d immunoreactive oligodendrocytes delineate small cortical plaques in multiple sclerosis. Exp Neurol 174(1):81–88PubMedCrossRefGoogle Scholar
  85. 85.
    Shimura H, Hattori N, Kubo S, Mizuno Y, Asakawa S, Minoshima S, Shimizu N, Iwai K, Chiba T, Tanaka K, Suzuki T (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25(3):302–305PubMedCrossRefGoogle Scholar
  86. 86.
    Sloane JA, Hinman JD, Lubonia M, Hollander W, Abraham CR (2003) Age-dependent myelin degeneration and proteolysis of oligodendrocyte proteins is associated with the activation of calpain-1 in the rhesus monkey. J Neurochem 84(1):157–168PubMedCrossRefGoogle Scholar
  87. 87.
    Sloane JA, Hollander W, Moss MB, Rosene DL, Abraham CR (1999) Increased microglial activation and protein nitration in white matter of the aging monkey. Neurobiol Aging 20(4):395–405PubMedCrossRefGoogle Scholar
  88. 88.
    Sloane JA, Hollander W, Rosene DL, Moss MB, Kemper T, Abraham CR (2000) Astrocytic hypertrophy and altered GFAP degradation with age in subcortical white matter of the rhesus monkey. Brain Res 862(1–2):1–10PubMedCrossRefGoogle Scholar
  89. 89.
    Sloane JA, Pietropaolo MF, Rosene DL, Moss MB, Peters A, Kemper T, Abraham CR (1997) Lack of correlation between plaque burden and cognition in the aged monkey. Acta Neuropathol (Berl) 94(5):471–478CrossRefGoogle Scholar
  90. 90.
    Small SA, Stern Y, Tang M, Mayeux R (1999) Selective decline in memory function among healthy elderly. Neurology 52(7):1392–1396PubMedGoogle Scholar
  91. 91.
    Smith DE, Rapp PR, McKay HM, Roberts JA, Tuszynski MH (2004) Memory impairment in aged primates is associated with focal death of cortical neurons and atrophy of subcortical neurons. J Neurosci 24(18):4373–4381PubMedCrossRefGoogle Scholar
  92. 92.
    Struble RG, Price DL Jr, Cork LC, Price DL (1985) Senile plaques in cortex of aged normal monkeys. Brain Res 361(1–2):267–275PubMedCrossRefGoogle Scholar
  93. 93.
    Sugiyama I, Tanaka K, Akita M, Yoshida K, Kawase T, Asou H (2002) Ultrastructural analysis of the paranodal junction of myelinated fibers in 31-month-old-rats. J Neurosci Res 70(3):309–317PubMedCrossRefGoogle Scholar
  94. 94.
    Svennerholm L, Bostrom K, Jungbjer B, Olsson L (1994) Membrane lipids of adult human brain: lipid composition of frontal and temporal lobe in subjects of age 20 to 100 years. J Neurochem 63(5):1802–1811PubMedCrossRefGoogle Scholar
  95. 95.
    Tang Y, Nyengaard JR, Pakkenberg B, Gundersen HJ (1997) Age-induced white matter changes in the human brain: a stereological investigation. Neurobiol Aging 18(6):609–615PubMedCrossRefGoogle Scholar
  96. 96.
    Terry RD, DeTeresa R, Hansen LA (1987) Neocortical cell counts in normal human adult aging. Ann Neurol 21(6):530–539PubMedCrossRefGoogle Scholar
  97. 97.
    Wang DS, Bennett DA, Mufson EJ, Mattila P, Cochran E, Dickson DW (2004) Contribution of changes in ubiquitin and myelin basic protein to age-related cognitive decline. Neurosci Res 48(1):93–100PubMedCrossRefGoogle Scholar
  98. 98.
    West MJ (1993a) New stereological methods for counting neurons. Neurobiol Aging 14(4):275–285PubMedCrossRefGoogle Scholar
  99. 99.
    West MJ (1993b) Regionally specific loss of neurons in the aging human hippocampus. Neurobiol Aging 14(4):287–293PubMedCrossRefGoogle Scholar
  100. 100.
    Wiggins RC, Gorman A, Rolsten C, Samorajski T, Ballinger WE Jr, Freund G (1988) Effects of aging and alcohol on the biochemical composition of histologically normal human brain. Metab Brain Dis 3(1):67–80PubMedCrossRefGoogle Scholar
  101. 101.
    Wimberger DM, Roberts TP, Barkovich AJ, Prayer LM, Moseley ME, Kucharczyk J (1995) Identification of “premyelination“ by diffusion-weighted MRI. J Comput Assist Tomogr 19(1):28–33PubMedCrossRefGoogle Scholar
  102. 102.
    Yamada T, Akiyama H, McGeer PL (1990) Complement-activated oligodendroglia: a new pathogenic entity identified by immunostaining with antibodies to human complement proteins C3d and C4d. Neurosci Lett 112(2–3):161–166PubMedCrossRefGoogle Scholar
  103. 103.
    Zhang SC, Goetz BD, Carre JL, Duncan ID (2001) Reactive microglia in dysmyelination and demyelination. Glia 34(2):101–109PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Departments of Biochemistry and MedicineBoston University School of MedicineBostonUSA

Personalised recommendations