Neurochemical Research

, Volume 32, Issue 9, pp 1483–1488 | Cite as

Amyloid-β-Peptide Reduces the Expression Level of Mitochondrial Cytochrome Oxidase Subunits

  • Won Kyung Hong
  • Eun Hae Han
  • Dae Ghon Kim
  • Jung Yup Ahn
  • Jeong Soon Park
  • Bok Ghee Han
Original Paper

Abstract

Mitochondrial dysfunction is an important cause of neurological disorder including Alzheimer’s disease (AD). Mitochondria play a key role in the generation of reactive oxygen species (ROS), resulting in oxidative damage to neuronal cell and cellular compartments in the AD brain. Cytotoxicity induced by amyloid-beta (Aβ), a protein fragment of 25–35 amino acids in amyloid plaques has been shown to have neuro-toxic properties. They seem to involve mitochondrial dysfunction, but the underlying mechanisms are not clearly understood. The purpose of this study was to assess whether Aβ induced mitochondrial dysfunction involves changes in cytochrome c oxidase (COX) expression. We measured the activities of COX after expose of SK-N-SH cells (a human neuroblastoma cell line) to Aβ. We found that levels of mRNAs expressing mitochondrial COX subunits decreased significantly in Aβ-treated SK-N-SH cells in a dose-dependent manner. Human mitochondrial transcription factor-1 (TFAM) mRNA level also decreased after Aβ-treatment. These results suggest that Aβ modulates the mitochondrial gene expression through a decrease in TFAM.

Keywords

Alzheimer’s disease (AD) Amyloid-beta (Aβ) Reactive oxygen species (ROS) Cytochrome oxidase (COX) Human mitochondrial transcription factor-1 (TFAM) 

References

  1. 1.
    Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81(2):741–766PubMedGoogle Scholar
  2. 2.
    Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL (1989) Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 245(4916):417–420PubMedCrossRefGoogle Scholar
  3. 3.
    Maccioni RB, Lavados M, Maccioni CB, Mendoza-Naranjo A (2004) Biological markers of Alzheimer’s disease and mild cognitive impairment. Curr Alzheimer Res 1(4):307–314PubMedCrossRefGoogle Scholar
  4. 4.
    Cardoso SM, Proenca MT, Santos S, Santana I, Oliveira CR (2004a) Cytochrome c oxidase is decreased in Alzheimer’s disease platelets. Neurobiol Aging 25(1):105–110PubMedCrossRefGoogle Scholar
  5. 5.
    Canevari L, Clark JB, Bates TE (1999) Beta-amyloid fragment 25–35 selectively decreases complex IV activity in isolated mitochondria. FEBS Lett 457(1):131–134PubMedCrossRefGoogle Scholar
  6. 6.
    Song JH, Park JS, Choi JY, Lee YH, Han BK (2000) Mitochondrial dysfunction and oxidative stress in cytotoxicity induced by amyloid peptide. Kor J Gerontol 10(1):35–41Google Scholar
  7. 7.
    Keil U, Bonert A, Marques CA, Scherping I, Weyermann J, Strosznajder JB, Muller-Spahn F, Haass C, Czech C, Pradier L, Muller WE, Eckert A (2004) Amyloid beta-induced changes in nitric oxide production and mitochondrial activity lead to apoptosis. J Biol Chem 279(48):50310–50320PubMedCrossRefGoogle Scholar
  8. 8.
    Mark RJ, Keller JN, Kruman I, Mattson MP (1997) Basic FGF attenuates amyloid beta-peptide-induced oxidative stress, mitochondrial dysfunction, and impairment of Na+/K+-ATPase activity in hippocampal neurons. Brain Res 756(1–2):205–214PubMedCrossRefGoogle Scholar
  9. 9.
    Abramov AY, Canevari L, Duchen MR (2004) Beta-amyloid peptides induce mitochondrial dysfunction and oxidative stress in astrocytes and death of neurons through activation of NADPH oxidase. J Neurosci 24(2):565–575PubMedCrossRefGoogle Scholar
  10. 10.
    Eckert A, Keil U, Marques CA, Bonert A, Frey C, Schussel K, Muller WE (2003) Mitochondrial dysfunction, apoptotic cell death, and Alzheimer’s disease. Biochem Pharmacol 66(8):1627–1634PubMedCrossRefGoogle Scholar
  11. 11.
    Cecchi C, Fiorillo C, Sorbi S, Latorraca S, Nacmias B, Bagnoli S, Nassi P, Liguri G (2002) Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients. Free Radic Biol Med 33(10):1372–1379PubMedCrossRefGoogle Scholar
  12. 12.
    Cardoso SM, Santana I, Swerdlow RH, Oliveira CR (2004b) Mitochondria dysfunction of Alzheimer’s disease cybrids enhances Abeta toxicity. J Neurochem 89(6):1417–1426PubMedCrossRefGoogle Scholar
  13. 13.
    Anandatheerthavarada HK, Biswas G, Robin MA, Avadhani NG (2003) Mitochondrial targeting and a novel transmembrane arrest of Alzheimer’s amyloid precursor protein impairs mitochondrial function in neuronal cells. J Cell Biol 161(1):41–54PubMedCrossRefGoogle Scholar
  14. 14.
    Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 105(8–9):855–870PubMedCrossRefGoogle Scholar
  15. 15.
    Bennett MC, Diamond DM, Stryker SL, Parks JK, Parker WD Jr (1992) Cytochrome oxidase inhibition: a novel animal model of Alzheimer’s disease. J Geriatr Psychiatry Neurol 5(2):93–101PubMedGoogle Scholar
  16. 16.
    Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13(1):72–78PubMedCrossRefGoogle Scholar
  17. 17.
    Atamna H, Frey WH 2nd (2004) A role for heme in Alzheimer’s disease: heme binds amyloid beta and has altered metabolism. Proc Natl Acad Sci USA 101(30):11153–11158PubMedCrossRefGoogle Scholar
  18. 18.
    Parks JK, Smith TS, Trimmer PA, Bennett JP Jr, Parker WD Jr (2001) Neurotoxic Abeta peptides increase oxidative stress in vivo through NMDA-receptor and nitric-oxide-synthase mechanisms, and inhibit complex IV activity and induce a mitochondrial permeability transition in vitro. J Neurochem 76(4):1050–1056PubMedCrossRefGoogle Scholar
  19. 19.
    Combs CK, Karlo JC, Kao SC, Landreth GE (2001) Beta-amyloid stimulation of microglia and monocytes results in TNFalpha-dependent expression of inducible nitric oxide synthase and neuronal apoptosis. J Neurosci 21(4):1179–1188PubMedGoogle Scholar
  20. 20.
    Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA (2000) Reactive oxygen species, cell signaling, and cell injury. Free Radic Biol Med 28(10):1456–1462PubMedCrossRefGoogle Scholar
  21. 21.
    McCulloch V, Seidel-Rogol BL, Shadel GS (2002) A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol Cell Biol 22(4):1116–1125PubMedCrossRefGoogle Scholar
  22. 22.
    de las Cuevas N, Munoz U, Hermida OG, Martin-Requero A (2005) Altered transcriptional regulators in response to serum in immortalized lymphocytes from Alzheimer’s disease patients. Neurobiol Aging 26(5):615–624CrossRefGoogle Scholar
  23. 23.
    da Silva AM, Payao SL, Borsatto B, Bertolucci PH, Smith MA (2000) Quantitative evaluation of the rRNA in Alzheimer’s disease. Mech Ageing Dev 120(1–3):57–64PubMedCrossRefGoogle Scholar
  24. 24.
    Larsson NG, Wang J, Wilhelmsson H, Oldfors A, Rustin P, Lewandoski M, Barsh GS, Clayton DA (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18(3):231–236PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Won Kyung Hong
    • 1
  • Eun Hae Han
    • 1
  • Dae Ghon Kim
    • 2
  • Jung Yup Ahn
    • 1
  • Jeong Soon Park
    • 3
  • Bok Ghee Han
    • 1
  1. 1.Biobank for Health Sciences, Center for Genome SciencesNational Institute of Health, Korea Center for Disease Control and Prevention (KCDC)SeoulKorea
  2. 2.Chonbuk National University Medical SchoolJeonjuKorea
  3. 3.Department of Cellular and Structural BiologyUniversity of Texas Health Science CenterSan AntonioUSA

Personalised recommendations