Neurochemical Research

, Volume 32, Issue 10, pp 1720–1725 | Cite as

Neuroprotective Effects of Natural Products: Interaction with Intracellular Kinases, Amyloid Peptides and a Possible Role for Transthyretin

  • Stéphane Bastianetto
  • Jonathan Brouillette
  • Rémi Quirion
Original Paper


Various studies reported on the neuroprotective effects of natural products, particularly polyphenols, widely present in food and beverages. For example, we have shown that resveratrol, a polyphenol contained present in red wine and other foods, activates the phosphorylation of protein kinase C (PKC), this effect being involved in its neuroprotective action against Aß-induced toxicity. Moreover, tea-derived catechin gallate esters inhibit the formation Aß oligomers/fibrils, suggesting that this action likely contributes to their neuroprotective effects. Interestingly, the effects of polyphenols may be attributable, at least in part, to the presence of specific binding sites. Autoradiographic studies revealed that these binding sites are particularly enriched in choroids plexus in the rat brain. Interestingly, the choroid plexus secretes transthyretin, a protein that has been shown to prevent Aβ aggregation and that may be critical to the maintenance of normal learning capacities in aging. Taken together, these data suggest that polyphenols target multiple enzymes/proteins leading to their neuroprotective actions.


Alzheimer’s disease Aß peptides Resveratrol Tea catechins Transthyretin Polyphenols Neuroprotection Beta-amyloid PKC 



This work was supported by grants from the Canadian Institutes of Health Research (CIHR) to R.Q. and a student scholarship from CIHR to J.B.


  1. 1.
    Orgogozo JM, Dartigues JF, Lafont S, Letenneur L, Commenges D, Salomon R, Renaud S, Breteler MB (1997) Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Revue Neurologique 153:185–192PubMedGoogle Scholar
  2. 2.
    Pan T, Jankovic J, Le W (2003) Potential therapeutic properties of green tea polyphenols in Parkinson’s disease. Drugs Aging 20:711–721PubMedCrossRefGoogle Scholar
  3. 3.
    Weinreb O, Mandel S, Amit T, Youdim MB (2004) Neurological mechanisms of green tea polyphenols in Alzheimer’s and Parkinson’s diseases. J Nutr Biochem 15:506–516PubMedCrossRefGoogle Scholar
  4. 4.
    Dauchet L, Amouyel P, Dallongeville J (2005) Fruit and vegetable consumption and risk of stroke: a meta-analysis of cohort studies. Neurology 65:1193–1197PubMedCrossRefGoogle Scholar
  5. 5.
    Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB (2006) Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med 119:751–759PubMedCrossRefGoogle Scholar
  6. 6.
    Le Bars PL (2003) Magnitude of effect and special approach to Ginkgo biloba extract EGb 761 in cognitive disorders. Pharmacopsychiatry 36(Suppl. 1):S44–SS9PubMedGoogle Scholar
  7. 7.
    Bastianetto S, Zheng WH, Quirion R (2000) Neuroprotective abilities of resveratrol and other red wine constituents against nitric oxide-related toxicity in cultured hippocampal neurons. Br J Pharmacol 131:711–720PubMedCrossRefGoogle Scholar
  8. 8.
    Bastianetto S, Quirion R (2001) Resveratrol and red wine constituents: evaluation of their neuroprotective properties. Pharmacol News 8:33–38Google Scholar
  9. 9.
    Nagai K, Jiang MH, Hada J, Nagata T, Yajima Y, Yamamoto S, Nishizaki T (2002) (-)-Epigallocatechin gallate protects against NO stress-induced neuronal damage after ischemia by acting as an anti-oxidant. Brain Res 956:319–332PubMedCrossRefGoogle Scholar
  10. 10.
    Levites Y, Amit T, Mandel S, Youdim MB (2003) Neuroprotection and neurorescue against Abeta toxicity and PKC-dependent release of nonamyloidogenic soluble precursor protein by green tea polyphenol (-)-epigallocatechin-3-gallate. FASEB J 17:952–954PubMedGoogle Scholar
  11. 11.
    Han YS, Zheng WH, Bastianetto S, Chabot JG, Quirion R (2004) Neuroprotective effects of resveratrol against beta-amyloid-induced neurotoxicity in rat hippocampal neurons: involvement of protein kinase C. Br J Pharmacol 141:997–1005PubMedCrossRefGoogle Scholar
  12. 12.
    Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MB (2005) Multifunctional activities of green tea catechins in neuroprotection. Neurosignals 14:46–60PubMedCrossRefGoogle Scholar
  13. 13.
    Mandel S, Weinreb O, Amit T, Youdim MB (2004) Cell signaling pathways in the neuroprotective actions of the green tea polyphenol (-)-epigallocatechin-3-gallate: implications for neurodegenerative diseases. J Neurochem 88:1555–1569PubMedCrossRefGoogle Scholar
  14. 14.
    Choi YB, Kim YI, Lee KS, Kim BS, Kim DJ (2004) Protective effect of epigallocatechin gallate on brain damage after transient middle cerebral artery occlusion in rats. Brain Res 1019:47–54PubMedCrossRefGoogle Scholar
  15. 15.
    Bastianetto S, Yao ZX, Papadopoulos V, Quirion R (2006) Neuroprotective effects of green and black teas and their catechin gallate esters against beta-amyloid-induced toxicity. Eur J Neurosci 23:55–64PubMedCrossRefGoogle Scholar
  16. 16.
    Levites Y, Amit T, Youdim MB, Mandel S (2002) Involvement of protein kinase C activation and cell survival/cell cycle genes in green tea polyphenol (-)-epigallocatechin 3-gallate neuroprotective action. J Biol Chem 277:30574–30580PubMedCrossRefGoogle Scholar
  17. 17.
    Kuriyama S, Hozawa A, Ohmori K, Shimazu T, Matsui T, Ebihara S, Awata S, Nagatomi R, Arai H, Tsuji I (2006) Green tea consumption and cognitive function: a cross-sectional study from the Tsurugaya Project 1. Am J Clin Nutr 83:355–361PubMedGoogle Scholar
  18. 18.
    Del Rio D, Stewart AJ, Mullen W, Burns J, Lean ME, Brighenti F, Crozier A (2004) HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J Agric Food Chem. 52:2807–2815PubMedCrossRefGoogle Scholar
  19. 19.
    Klein WL 2002 Abeta toxicity in Alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int 41:345–352PubMedCrossRefGoogle Scholar
  20. 20.
    Rezai-Zadeh K, Shytle D, Sun N, Mori T, Hou H, Jeanniton D, Ehrhart J, Townsend K, Zeng J, Morgan D, Hardy J, Town T, Tan J (2005) Green tea epigallocatechin-3-gallate (EGCG) modulates amyloid precursor protein cleavage and reduces cerebral amyloidosis in Alzheimer transgenic mice. J Neurosci 25:8807–8814PubMedCrossRefGoogle Scholar
  21. 21.
    Riviere C, Richard T, Quentin L, Krisa S, Merillon JM, Monti JP (2006) Inhibitory activity of stilbenes on Alzheimer’s beta-amyloid fibrils in vitro. Bioorg Med Chem [Epub ahead of print]Google Scholar
  22. 22.
    Han YS, Bastianetto S, Dumont Y, Quirion R (2006) Specific plasma membrane binding sites for polyphenols, including resveratrol, in the rat brain. J Pharmacol Exp Ther 318:238–245PubMedCrossRefGoogle Scholar
  23. 23.
    Schwarzman AL, Gregori L, Vitek MP, Lyubski S, Strittmatter WJ, Enghilde JJ, Bhasin R, Silverman J, Weisgraber KH, Coyle PK (1994) Transthyretin sequesters amyloid beta protein and prevents amyloid formation. Proc Natl Acad Sci USA 91:8368–8372PubMedCrossRefGoogle Scholar
  24. 24.
    Carro E, Trejo JL, Gomez-Isla T, LeRoith D, Torres-Aleman I (2002) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397PubMedCrossRefGoogle Scholar
  25. 25.
    Merched A, Serot JM, Visvikis S, Aguillon D, Faure G, Siest G (1998) Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer’s patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett 425:225–228PubMedCrossRefGoogle Scholar
  26. 26.
    Serot JM, Christmann D, Dubost T, Couturier M (1997) Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatry 63:506–508PubMedCrossRefGoogle Scholar
  27. 27.
    Stein TD, Johnson JA (2002) Lack of neurodegeneration in transgenic mice overexpressing mutant amyloid precursor protein is associated with increased levels of transthyretin and the activation of cell survival pathways. J Neurosci 22:7380–7388PubMedGoogle Scholar
  28. 28.
    Stein TD, Anders NJ, DeCarli C, Chan SL, Mattson MP, Johnson JA (2004) Neutralization of transthyretin reverses the neuroprotective effects of secreted amyloid precursor protein (APP) in APPSW mice resulting in tau phosphorylation and loss of hippocampal neurons: support for the amyloid hypothesis. J Neurosci 24:7707–7717PubMedCrossRefGoogle Scholar
  29. 29.
    Cocco S, Diaz G, Stancampiano R, Diana A, Carta M, Curreli R, Sarais L, Fadda F (2002) Vitamin A deficiency produces spatial learning and memory impairment in rats. Neuroscience 115:475–482PubMedCrossRefGoogle Scholar
  30. 30.
    Etchamendy N, Enderlin V, Marighetto A, Vouimba RM, Pallet V, Jaffard R, Higueret P (2001) Alleviation of a selective age-related relational memory deficit in mice by pharmacologically induced normalization of brain retinoid signaling. J Neurosci 21:6423–6429PubMedGoogle Scholar
  31. 31.
    Chiang MY, Misner D, Kempermann G, Schikorski T, Giguere V, Sucov HM, Gage FH, Stevens CF, Evans RM (1998) An essential role for retinoid receptors RARbeta and RXRgamma in long-term potentiation and depression. Neuron 21:1353–1361PubMedCrossRefGoogle Scholar
  32. 32.
    Taubenfeld SM, Milekic MH, Monti B, Alberini CM (2001) The consolidation of new but not reactivated memory requires hippocampal C/EBPbeta. Nat Neurosci 4:813–818PubMedCrossRefGoogle Scholar
  33. 33.
    Roberson ED, English JD, Adams JP, Selcher JC, Kondratick C, Sweatt JD (1999) The mitogen-activated protein kinase cascade couples PKA and PKC to cAMP response element binding protein phosphorylation in area CA1 of hippocampus. J Neurosci 19:4337–4348PubMedGoogle Scholar
  34. 34.
    Impey S, Obrietan K, Wong ST, Poser S, Yano S, Wayman G, Deloulme JC, Chan G, Storm DR (1998) Cross talk between ERK and PKA is required for Ca2+ stimulation of CREB-dependent transcription and ERK nuclear translocation. Neuron 21:869–883PubMedCrossRefGoogle Scholar
  35. 35.
    Huang YY, Martin KC, Kandel ER (2000) Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 20:6317–6325PubMedGoogle Scholar
  36. 36.
    Zanassi P, Paolillo M, Feliciello A, Avvedimento EV, Gallo V, Schinelli S (2001) cAMP-dependent protein kinase induces cAMP-response element-binding protein phosphorylation via an intracellular calcium release/ERK-dependent pathway in striatal neurons. J Biol Chem 276:11487–11495PubMedCrossRefGoogle Scholar
  37. 37.
    Marambaud P, Zhao H, Davies P (2005) Resveratrol promotes clearance of Alzheimer’s disease amyloid-beta peptides. J Biol Chem 280:37377–37382PubMedCrossRefGoogle Scholar
  38. 38.
    Ono K, Hasegawa K, Naiki H, Yamada M (2004) Anti-amyloidogenic activity of tannic acid and its activity to destabilize Alzheimer’s beta-amyloid fibrils in vitro. Biochim Biophys Acta 1690:193–202PubMedGoogle Scholar
  39. 39.
    Ono K, Yoshiike Y, Takashima A, Hasegawa K, Naiki H, Yamada, M (2003) Potent anti-amyloidogenic and fibril-destabilizing effects of polyphenols in vitro: implications for the prevention and therapeutics of Alzheimer’s disease. J Neurochem 87:172–181PubMedCrossRefGoogle Scholar
  40. 40.
    Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF (2004) Intracerebral transplantation of porcine choroid plexus provides structural and functional neuroprotection in a rodent model of stroke. Stroke 35:2206–2210PubMedCrossRefGoogle Scholar
  41. 41.
    Borlongan CV, Skinner SJ, Geaney M, Vasconcellos AV, Elliott RB, Emerich DF (2004) Neuroprotection by encapsulated choroid plexus in a rodent model of Huntington’s disease. Neuroreport 15:2521–2525PubMedCrossRefGoogle Scholar
  42. 42.
    Watanabe Y, Matsumoto N, Dezawa M, Itokazu Y, Yoshihara T, Ide C (2005) Conditioned medium of the primary culture of rat choroid plexus epithelial (modified ependymal) cells enhances neurite outgrowth and survival of hippocampal neurons. Neurosci Lett 379:158–163PubMedCrossRefGoogle Scholar
  43. 43.
    Tsuzuki K, Fukatsu R, Yamaguchi H, Tateno M, Imai K, Fujii N, Yamauchi T (2000) Transthyretin binds amyloid beta peptides, Abeta1–42 and Abeta1–40 to form complex in the autopsied human kidney—possible role of transthyretin for abeta sequestration. Neurosci Lett 281:171–174PubMedCrossRefGoogle Scholar
  44. 44.
    Watanabe CM, Wolffram S, Ader P, Rimbach G, Packer L, Maguire JJ, Schultz PG, Gohil K (2001) The in vivo neuromodulatory effects of the herbal medicine ginkgo biloba. Proc Natl Acad Sci USA 98:6577–6580PubMedCrossRefGoogle Scholar
  45. 45.
    Reixach N, Adamski-Werner SL, Kelly JW, Koziol J, Buxbaum JN (2006) Cell based screening of inhibitors of transthyretin aggregation. Biochem Biophys Res Commun 348:889–897PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Stéphane Bastianetto
    • 1
  • Jonathan Brouillette
    • 1
  • Rémi Quirion
    • 1
  1. 1.Department of Psychiatry, Douglas Hospital Research CentreMcGill UniversityVerdun, MontrealCanada

Personalised recommendations