Neurochemical Research

, Volume 32, Issue 8, pp 1343–1350

Effects of Chronic Haloperidol and/or Clozapine on Oxidative Stress Parameters in Rat Brain

  • Fabiano R. Agostinho
  • Luciano K. Jornada
  • Nadja Schröder
  • Rafael Roesler
  • Felipe Dal-Pizzol
  • João Quevedo
Original Paper

Abstract

Decreased antioxidant activity is considered as one of the causes of tardive dyskinesia in schizophrenic patients in a prolonged neuroleptic treatment course. Haloperidol (HAL) has been hypothesized to increase oxidative stress, while clozapine (CLO) would produce less oxidative damage. The objective was to determine whether CLO for 28 days could reverse or attenuate HAL-induced oxidative damage in animals previously treated with HAL for 28 days. HAL significantly increased thiobarbituric acid reactive substances levels in the cortex (CX) and striatum and increased protein carbonyls in hippocampus (HP) and CX and this was not attenuated by CLO treatment. In the total radical trapping antioxidant parameter assay there was a decrease in the HP total antioxidant potential induced by HAL and by treatment with HAL + CLO. Our findings demonstrated that the atypical antipsychotic CLO could not revert oxidative damage caused by HAL.

Keywords

Haloperidol Clozapine Oxidative stress Reactive oxygen species Antioxidant enzymes Peroxidative damage Schizophrenia Tardive dyskinesia 

References

  1. 1.
    Morgenstern H, Glazer WM (1993) Identifying risk factors for tardive dyskinesia among long-term outpatients maintained with neuroleptic medications. Arch Gen Psychiatry 50:723–733PubMedGoogle Scholar
  2. 2.
    Raja M (1995) Tardive dystonia: prevalence, risk factors and comparison with tardive dyskinesia in a population of two hundred acute psychiatric in patients. Eur Arch Psychiatry Clin Neurosci 245:145–151PubMedCrossRefGoogle Scholar
  3. 3.
    Andreassen OA et al (2003) Oral dyskinesias and histopathological alterations in substantia nigra after long-term haloperidol treatment of old rats. Neuroscience 122:717–725PubMedCrossRefGoogle Scholar
  4. 4.
    Sachdev P, Saharov T, Cathcart S (1999) The preventive role of antioxidants (selegiline and vitamin E) in a rat model of tardive dyskinesia. Biol Psychiatry 46:1672–1681PubMedCrossRefGoogle Scholar
  5. 5.
    Jeste DV, Lacro JP, Baily A et al (1999) Lower incidence of tardive dyskinesia with rispiridone compared with haloperidol in older patients. J Am Geriatr Soc 47:716–719PubMedGoogle Scholar
  6. 6.
    Paulson GW (2005) Historical comments on tardive dyskinesia: a neurologist’s perspective. J Clin Psychiatry 66:260–264PubMedCrossRefGoogle Scholar
  7. 7.
    Correll CU, Leucht S, Kane JM (2004) Lower risk for tardive dyskinesia associated with second-generation antipsychotics: a systematic review of 1-year studies. Am J Psychiatry 161:414–425PubMedCrossRefGoogle Scholar
  8. 8.
    Westerink BHC, Vries JB (1989) On the mechanism of neuroleptic induced increase in striatal dopamine release: brain dialysis provides direct evidence of mediation by autoreceptors localized on nerve terminals. Neurosci Lett 99:197–202PubMedCrossRefGoogle Scholar
  9. 9.
    Wayner DDM, Burton GW, Ingold KU et al (1985) Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 187:33–37PubMedCrossRefGoogle Scholar
  10. 10.
    Yokoyama H, Kasai N, Ueda Y et al (1998) In vivo analysis of hydrogen peroxide and lipid radicals in the striatum of rats under long-term administration of a neuroleptic. Free Radic Biol Med 26:1056–1060CrossRefGoogle Scholar
  11. 11.
    Tsai G, Goff DC, Chang RW et al (1998) Markers of glutamatergic neurotransmission and oxidative stress associated with tardive dyskinesia. Am J Psychiatry 155:1207–1213PubMedGoogle Scholar
  12. 12.
    Gupta S, Mosnik D, Black DW et al (1999) Tardive dyskinesia: review of treatments past, present, and future. Ann Clin Psychiatry 11:257–266PubMedCrossRefGoogle Scholar
  13. 13.
    Soares KV, McGrath JJ (1999) The treatment of tardive dyskinesia—a systematic review and meta-analysis. Schizophr Res 39:1–16PubMedCrossRefGoogle Scholar
  14. 14.
    Elkashef AM, Wyatt RJ (1999) Tardive dyskinesia: possible involvement of free radicals and treatment with vitamin E. Schizophr Bull 25:731–740PubMedGoogle Scholar
  15. 15.
    Andreassen OA, Jùrgensenb HA (2000) Neurotoxicity associated with neuroleptic-induced oral dyskinesias in rats: implications for tardive dyskinesia? Prog Neurobiol 61:525–541PubMedCrossRefGoogle Scholar
  16. 16.
    Vilner BJ, DeCosta BR, Bowen WD (1995) Cytotoxic effects of sigma ligants: sigma receptor mediated alteration in cellular morphology and viability. J Neurosci 15:117–134PubMedGoogle Scholar
  17. 17.
    Polydoro M, Schröder N, Noemia M et al (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behavior 78:751–756CrossRefGoogle Scholar
  18. 18.
    Reinke A, Martins MR, Lima MS et al (2004) Haloperidol and clozapine, but not olanzapine, induces oxidative stress in rat brain. Neurosci Lett 372:157–160PubMedCrossRefGoogle Scholar
  19. 19.
    Creese I, Burt D, Snyder SH (1976) Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 192:481–483PubMedCrossRefGoogle Scholar
  20. 20.
    Fang J, Lai CT, Yu PH (1996) Neurotoxic effect of 4-(4-chlorophenyl)-1-(4-(4-fluorophenyl)-4-oxobutyl(-pyridinium) (HP+), a major metabolite of haloperidol in the dopaminergic system in vitro and in vivo. Biog Amines 12:125–134Google Scholar
  21. 21.
    See RE (1991) Striatal dopamine metabolism increases during long-term haloperidol administration in rats but shows tolerance in response to acute challenge with raclopride. Neurosci Lett 129:265–268PubMedCrossRefGoogle Scholar
  22. 22.
    Shivakumar BR, Ravindranath V (1993) Oxidative stress and thiol modification induced by chronic administration of haloperidol. J Pharmacol Exp Ther 265:1137–1141PubMedGoogle Scholar
  23. 23.
    Tuunainen A, Wahlbeck K, Gilbody S (2002) Newer atypical antipsychotic medication in comparison to clozapine: a systematic review of randomized trials. Schizophr Res 56:1–10PubMedCrossRefGoogle Scholar
  24. 24.
    Daly DA, Moghaddam B (1993) Actions of clozapine and haloperidol on the extracellular levels of excitotory amino acids in the prefrontal cortex and striatum of conscious rats. Neurosci Lett 152:61–64PubMedCrossRefGoogle Scholar
  25. 25.
    Bassitt DP, Louza Neto MR (1998) Clozapine efficacy in tardive dyskinesia in schizophrenic patients. Eur Arch Psychiatry Clin Neurosci 248:209–211PubMedCrossRefGoogle Scholar
  26. 26.
    Parikh V, Khan MM, Mahadik SP (2003) Differential effects of antipsychotics on expression of antioxidant enzymes and membrane lipid peroxidation in rat brain. J Psychiatry Res 37:43–51CrossRefGoogle Scholar
  27. 27.
    Gama CS, Salvador M, Andreazza AC et al (2006) Elevated serum superoxide dismutase and thiobarbituric acid reactive substances in schizophrenia: a study of patients treated with haloperidol or clozapine. Prog Neuropsychopharmacol Biol Psychiatry 30:512–515PubMedCrossRefGoogle Scholar
  28. 28.
    Draper HH, Hadley M (1990) Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186:421–431PubMedGoogle Scholar
  29. 29.
    Levine RL, Garland D, Oliver CN (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478PubMedGoogle Scholar
  30. 30.
    Wayner DDM, Burton GW, Ingold KU et al (1985) Quantitative measurement of the total, peroxyl radical-trapping antioxidant capability of human blood plasma by controlled peroxidation. The important contribution made by plasma proteins. FEBS Lett 187:33–37PubMedCrossRefGoogle Scholar
  31. 31.
    Lowry OH, Rosebrough AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275PubMedGoogle Scholar
  32. 32.
    Bannister JV, Calaberese L (1987) Assays for SOD. Methods Biochem Anal 32:279–312PubMedCrossRefGoogle Scholar
  33. 33.
    Dal-Pizzol F, Klamt F, Bernard EA (2001a) Retinol supplementation induces oxidative stress and modulates antioxidant enzyme activities in rat Sertoli cells. Free Radic Res 34:395–404CrossRefGoogle Scholar
  34. 34.
    Dal-Pizzol F, Klamt F, Frota MLC Jr et al (2001b) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Dev Brain Res 130:109–114CrossRefGoogle Scholar
  35. 35.
    Cadet JL, Lohr JB, Jeste DV (1986) Free radicals and tardive dyskinesias. Trends Neurosci 9:107–108CrossRefGoogle Scholar
  36. 36.
    Creese G, Burt D, Synder SIL (1976) Dopamine receptor binding and pharmacological potencies and antischizophrenic drugs. Science 192:481–483PubMedCrossRefGoogle Scholar
  37. 37.
    Coyle JT, Puttfarcken P (1993) Oxidative stress glutamate and neurodegenerative disorders. Science 262:689–695PubMedCrossRefGoogle Scholar
  38. 38.
    Ravindranath V, Reed DJ (1990) Glutathione depletion and formation of glutathione protein mixed disulfide following exposure of brain mitochondria to oxidative stress. Biochem Biophys Res Commun 169:150–158CrossRefGoogle Scholar
  39. 39.
    Nielsen EB, Lyon M (1978) Evidence for cell loss in corpus striatum after long-term treatment with a neuroleptic drug (flupenithixol) in rats. Psychopharmacology 59:85–89PubMedCrossRefGoogle Scholar
  40. 40.
    Subramanyam B, Rollema H, Woolf T (1990) Identification of a potentially neurotoxic pyridinium metabolite of haloperidol in rats. Biochem Biophys Res Commun 166:238–244PubMedCrossRefGoogle Scholar
  41. 41.
    Chang WH, Jann MW, Chiang TS (1996) Plasma haloperidol and reduced haloperidol concentrations in a geriatric population. Neuropsychobiology 33:12–16PubMedCrossRefGoogle Scholar
  42. 42.
    Galili R, Mosberg, Gil-Ad I, Weizman A (2000) Haloperidol-induced neurotoxicity—possible implications for tardive dyskinesia. J Neural Transm 107(4):479–490Google Scholar
  43. 43.
    de Leon J, Moral L, Camunas C (1991) Clozapine and jaw dyskinesia: a case report. J Clin Psychiatry 52:494–495PubMedGoogle Scholar
  44. 44.
    Arnaiz SL, Coronel MF, Boveris A (1999) Nitric oxide, superoxide and hydrogen peroxide production in brain mitochondria after haloperidol treatment. Nitric Oxide 3:235–243PubMedCrossRefGoogle Scholar
  45. 45.
    Dal-Pizzol F, Klamt F, Bernard EA et al (2001) Retinol supplementation induces oxidative stress and modulates antioxidant enzyme activities in rat Sertoli cells. Free Radic Res 34:395–404PubMedCrossRefGoogle Scholar
  46. 46.
    Dal-Pizzol F, Klamt F, Frota Jr MLC et al (2001) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Dev Brain Res 130:109–114CrossRefGoogle Scholar
  47. 47.
    Dal-Pizzol F, Klamt F, Vianna MMR et al (2000) Lipid peroxidation in hippocampus early and late after status epilepticus induced by pilocarpine or kainic acidin Wistar rats. Neurosci Lett 291:179–182PubMedCrossRefGoogle Scholar
  48. 48.
    Polydoro M, Schröder N, Noemia MM et al (2004) Haloperidol- and clozapine-induced oxidative stress in the rat brain. Pharmacol Biochem Behav 78:751–756PubMedCrossRefGoogle Scholar
  49. 49.
    Desco M, Gispert JD, Reig S et al (2003) Cerebral metabolic patterns in chronic and recent-onset schizophrenia. Psychiatry Res 122:125–135PubMedCrossRefGoogle Scholar
  50. 50.
    Halliwell B, Gutteridge JMC (1989) Lipid peroxidation: a radical chain reaction. In: Free radicals biology and medicine, Oxford University Press, New York, pp 188–276Google Scholar
  51. 51.
    Phillis J (1994) ‘‘A radical’’ view of cerebral ischemic injury. Prog Neurobiol 42:441–448PubMedCrossRefGoogle Scholar
  52. 52.
    Frederickson CJ, Cuajungco CJ, Labuda J (2002) Nitric oxide causes apparent release of zinc from presynaptic boutons. Neuroscience 115:471–474PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fabiano R. Agostinho
    • 1
  • Luciano K. Jornada
    • 1
  • Nadja Schröder
    • 2
  • Rafael Roesler
    • 3
  • Felipe Dal-Pizzol
    • 4
  • João Quevedo
    • 1
  1. 1.Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciumaBrazil
  2. 2.Neurobiology and Developmental Biology Laboratory, Faculty of BiosciencesPontifical Catholic UniversityPorto AlegreBrazil
  3. 3.Department of Pharmacology, Institute for Basic Health SciencesUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  4. 4.Laboratório de Fisiopatologia Experimental, Programa de Pós-Graduação em Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciumaBrazil

Personalised recommendations