Neurochemical Research

, Volume 32, Issue 7, pp 1179–1187

Effect of Chronic Administration of Ethanol on the Regulation of Tyrosine Kinase Phosphorylation of the GABAA Receptor Subunits in the Rat Brain

  • C. R. Marutha Ravindran
  • Ashok K. Mehta
  • Maharaj K. Ticku
Original Paper
  • 81 Downloads

Abstract

One of the many pharmacological targets of ethanol is the GABA inhibitory system, and chronic ethanol (CE) is known to alter the polypeptide levels of the GABAA receptor subunits in rat brain regions. In the present study, we investigated the regulation of the tyrosine kinase phosphorylation of the GABAA receptor α1-, β2- and γ2-subunits in the rat cerebellum, cerebral cortex and hippocampus following chronic administration of ethanol to the rats. We observed either down-regulation or no change in the tyrosine kinase phosphorylation of the α1 subunit, whereas there was an up-regulation or no change in the case of β2- and γ2-subunits of the GABAA receptors depending on the brain region following chronic administration of ethanol to the rats. These changes reverted back to the control level following 48 h of ethanol-withdrawal. These results suggest that tyrosine kinase phosphorylation of GABAA receptors may play a significant role in ethanol dependence.

Keywords

Chronic ethanol GABAA receptor subunits Tyrosine kinase phosphorylation Antibody Immunoprecipitation 

References

  1. 1.
    Mehta AK, Ticku MK (1999) An update on GABAA receptors. Brain Res Rev 29:196–217PubMedCrossRefGoogle Scholar
  2. 2.
    Sieghart W, Fuchs K, Tretter V, Ebert V, Jechlinger M, Hoger H, Adamiker D (1999) Structure and subunit composition of GABAA receptors. Neurochem Int 34:379–385PubMedCrossRefGoogle Scholar
  3. 3.
    Sieghart W (1995) Structure and pharmacology of γ-aminobutyric acidA receptor subtypes. Pharmacol Rev 47:181–234PubMedGoogle Scholar
  4. 4.
    Hunter BE, Walker DW, Riley JN (1974) Dissociation between physical dependence and volitional ethanol consumption: role of multiple withdrawal episodes. Pharmacol Biochem Behav 2:523–529PubMedCrossRefGoogle Scholar
  5. 5.
    Buck KJ, Harris RA (1990) Benzodiazepine agonist and inverse agonist actions on GABAA receptor-operated chloride channels. II. Chronic effects of ethanol. J Pharmacol Exp Ther 253:713–719PubMedGoogle Scholar
  6. 6.
    Sanna E, Serra M, Cossu A, Colombo G, Follesa P, Cuccheddu T, Concas A, Biggio G (1993) Chronic ethanol intoxication induces differential effects on GABAA and NMDA receptor function in the rat brain. Alcohol Clin Exp Res 17:115–123PubMedCrossRefGoogle Scholar
  7. 7.
    Devaud LL, Smith FD, Grayson DR, Morrow AL (1995) Chronic ethanol consumption differentially alters the expression of γ-aminobutyric acidA receptor subunit mRNAs in rat cerebral cortex competitive, quantitative reverse transcriptase-polymerase chain reaction analysis. Mol Pharmacol 48:861–868PubMedGoogle Scholar
  8. 8.
    Mhatre MC, Mehta AK, Ticku MK (1988) Chronic ethanol administration increases the binding of the benzodiazepine inverse agonist and alcohol antagonist [3H]Ro 15-4513 in rat brain. Eur J Pharmacol 153:141–145PubMedCrossRefGoogle Scholar
  9. 9.
    Morrow AL, Herbert JS, Montpied P (1992) Differential effects of chronic ethanol administration on GABAA receptor α1 and α6 subunit mRNA levels in rat cerebellum. J Mol Cell Neurosci 3:251–258CrossRefGoogle Scholar
  10. 10.
    Levitan IB (1994) Modulation of ion channels by protein phosphorylation and dephosphorylation. Ann Rev Physiol 56:193–212CrossRefGoogle Scholar
  11. 11.
    Holmes TC, Fadool DA, Levitan IB (1996) Tyrosine phosphorylation of the Kv1.3 potassium channel. J Neurosci 16:1581–1590PubMedGoogle Scholar
  12. 12.
    Wang YT, Yu XM, Salter MW (1996) Ca2+-independent reduction of NMDA receptor-mediated currents by protein tyrosine phosphorylation. Proc Nat Acad Sci USA 93:1721–1725PubMedCrossRefGoogle Scholar
  13. 13.
    Brandon NJ, Smart TG, Moss SJ (2000) Regulation of GABAA receptors by protein phosphorylation. In: Olsen R (Ed.) GABA in the nervous system. Lippincott Williams & Wilkins, Baltimore, MDGoogle Scholar
  14. 14.
    Kalluri HSG, Ticku MK (2002) Ethanol-mediated inhibition of mitogen-activated protein kinase phosphorylation in mouse brain. Eur J Pharmacol 439:53–58PubMedCrossRefGoogle Scholar
  15. 15.
    Kalluri HSG, Ticku MK (2002) Role of GABAA receptors in the ethanol-mediated inhibition of extracellular signal-regulated kinase. Eur J Pharmacol 451:51–54PubMedCrossRefGoogle Scholar
  16. 16.
    Marutha Ravindran CR, Ticku MK (2006) Tyrosine kinase phosphorylation of GABAA receptor subunits following chronic ethanol exposure of cultured cortical neurons of mice. Brain Res 1086:35–41PubMedCrossRefGoogle Scholar
  17. 17.
    Marutha Ravindran CR, Ticku MK (2006) Tyrosine kinase phosphorylation of GABAA receptor α1, β2, and γ2 subunits following chronic intermittent ethanol (CIE) exposure of cultured cortical neurons of mice. Neurochem Res 31:1111–1118CrossRefGoogle Scholar
  18. 18.
    Majchrowicz E (1975) Induction of physical dependence upon ethanol and the associated behavioral changes in rats. Psychopharmacol 43:245–254CrossRefGoogle Scholar
  19. 19.
    Mehta AK, Ticku MK (1999) Prevalence of the GABAA receptor assemblies containing α1-subunit in the rat cerebellum and cerebral cortex as determined by immunoprecipitation: lack of modulation by chronic ethanol administration. Mol Brain Res 67:194–199PubMedCrossRefGoogle Scholar
  20. 20.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  21. 21.
    Mehta AK, Ticku MK (2005) Effect of chronic administration of ethanol on GABAA receptor assemblies derived from α2-, α3-, β2- and γ2-subunits in the rat cerebral cortex. Brain Res 1031:134–137PubMedCrossRefGoogle Scholar
  22. 22.
    Miralles CP, Li M, Mehta AK, Khan ZU, De Blas AL (1999) Immuno-cytochemical localization of the β3 subunit of the γ-aminobutyric acidA receptor in the rat brain. J Comp Neurol 413:535–548PubMedCrossRefGoogle Scholar
  23. 23.
    Kalluri HSG, Ticku MK (1999) Effect of ethanol on phosphorylation of the NMDAR2B subunit in mouse cortical neurons. Mol Brain Res 68:159–168PubMedCrossRefGoogle Scholar
  24. 24.
    Marutha Ravindran CR, Ticku MK (2004) Changes in methylation pattern of NMDA receptor NR2B gene in cortical neurons after chronic ethanol treatment in mice. Mol Brain Res 121:19–27PubMedCrossRefGoogle Scholar
  25. 25.
    Marutha Ravindran CR, Ticku MK (2005) Role of CpG islands in the up-regulation of NMDA receptor NR2B gene expression following chronic ethanol treatment of cultured cortical neurons of mice. Neurochem Int 46:313–327PubMedCrossRefGoogle Scholar
  26. 26.
    Marutha Ravindran CR, Ticku MK (2005) Methylation of NMDA receptor NR2B gene as a function of age in the mouse brain. Neurosci Lett 380:223–228CrossRefGoogle Scholar
  27. 27.
    Silvilotti L, Nistri A (1991) GABA receptor mechanisms in the central nervous system. Progress Neurobiol 36:35–92CrossRefGoogle Scholar
  28. 28.
    Criswell HE, Simson PE, Knapp DJ, Devaud LL, McCown TJ, Duncan GE, Morrow AL, Breese GR (1995) Effect of zolpidem on γ-aminobutyric acid (GABA)-induced inhibition predicts the interaction of ethanol with GABA on individual neurons in several rat brain regions. J Pharmacol Exp Ther 273:526–536PubMedGoogle Scholar
  29. 29.
    Duncan GE, Breese GR, Criswell HE, McCown TJ, Herbert JS, Devaud LL, Morrow AL (1995) Distribution of [3H]zolpidem binding sites in relation to mRNA encoding the α1, β2, γ2 subunits of GABAA receptor in rat brain. Neuroscience 64:1113–1128PubMedCrossRefGoogle Scholar
  30. 30.
    Devaud LL, Fritschy JM, Sieghart W, Morrow AL (1997) Bidirectional alterations of GABAA receptor subunit peptide levels in rat cortex during chronic ethanol consumption and withdrawal. J Neurochem 69:126–130PubMedCrossRefGoogle Scholar
  31. 31.
    Mhatre MC, Ticku MK (1992) Chronic ethanol administration alters γ-aminobutyric acidA receptor gene expression. Mol Pharmacol 42:415–422PubMedGoogle Scholar
  32. 32.
    Mhatre MC, Ticku MK (1994) Chronic ethanol treatment upregulates the GABAA receptor β subunit expression. Mol Brain Res 23:246–252PubMedCrossRefGoogle Scholar
  33. 33.
    Devaud LL, Purdy RH, Finn DA, Morrow AL (1996) Sensitization of γ- aminobutyric acidA receptors to neuroactive steroids in rats during ethanol withdrawal. J Pharmacol Exp Ther 278:510–517PubMedGoogle Scholar
  34. 34.
    Brunig I, Penschuck S, Berninger B, Benson J, Fritschy JM (2001) BDNF reduces miniature inhibitory post synaptic currents by rapid downregulation of GABAA receptor surface expression. Eur J Neurosci 13:1320–1328PubMedCrossRefGoogle Scholar
  35. 35.
    Brandon NJ, Delmas P, Hill J, Smart TG, Moss SJ (2001) Constitutive tyrosine phosphorylation of the GABAA receptor γ2 subunit in rat brain. Neuropharmacol 41:745–752CrossRefGoogle Scholar
  36. 36.
    Moss SJ, Gorrie GH, Amato A, Smart TG (1995) Modulation of GABAA receptors by tyrosine phosphorylation. Nature 377:344–348PubMedCrossRefGoogle Scholar
  37. 37.
    Valenzuela CF, Machu TK, McKernan RM, Whiting P, VanRenterghem BB, McManaman JL, Brozowski SJ, Smith GB, Olsen RW, Harris RA (1995) Tyrosine kinase phosphorylation of GABAA receptors. Mol Brain Res 31:165–172PubMedCrossRefGoogle Scholar
  38. 38.
    McKernan RM, Whiting PJ (1996) Which GABA-receptor subtypes really occur in the brain? Trends Neurosci 19:139–143PubMedCrossRefGoogle Scholar
  39. 39.
    Catarsi S, Drapeau P (1993) Tyrosine kinase-dependent selection of transmitter responses induced by neuronal contact. Nature 363:353–355PubMedCrossRefGoogle Scholar
  40. 40.
    O’Dell TJ, Kandel ER, Grant SG (1991) Long-term potentiation in the hippocampus is blocked by tyrosine kinase inhibitors. Nature 353:558–560PubMedCrossRefGoogle Scholar
  41. 41.
    Schlessinger J (2000) New roles for src kinases in control of cell survival and angiogenesis. Cell 100:293–296PubMedCrossRefGoogle Scholar
  42. 42.
    Yokota M, Saido TC, Miyaji K, Tani E, Kawashima S, Suzuki K (1994) Stimulation of protein-tyrosine phosphorylation in gerbil hippocampus after global forebrain ischemia. Neurosci Lett 168:69–72PubMedCrossRefGoogle Scholar
  43. 43.
    Stratton KR, Worley PF, Litz JS, Parsons SJ, Huganir RL, Baraban JM (1991) Electroconvulsive treatment induces a rapid and transient increase in tyrosine phosphorylation of a 40-kilodalton protein associated with microtubule-associated protein 2 kinase activity. J Neurochem 56:147–152PubMedCrossRefGoogle Scholar
  44. 44.
    Macdonald RL, Olsen RW (1994) GABAA receptor channels. Ann Rev Neurosci 17:569–602PubMedGoogle Scholar
  45. 45.
    Kanakura Y, Druker B, DiCarlo J, Cannistra SA, Griffin JD (1991) Phorbol 12-myristate 13-acetate inhibits granulocyte macrophage colony stimulating factor-induced protein tyrosine phosphorylation in a human factor-dependent hematopoietic cell line. J Biol Chem 266:490–495PubMedGoogle Scholar
  46. 46.
    Tilbrook PA, Bittorf T, Busfield SJ, Chappell D, Klinken SP (1996) Disrupted signaling in a mutant J2E cell line that shows enhanced viability, but does not proliferate or differentiate with erythropoietin. J Biol Chem 271:3453–3459PubMedCrossRefGoogle Scholar
  47. 47.
    Kalluri HSG, Mehta AK, Ticku MK (1998) Up-regulation of NMDA receptor subunits in rat brain following chronic ethanol treatment. Mol Brain Res 58:221–224PubMedCrossRefGoogle Scholar
  48. 48.
    Hu X-J, Ticku MK (1997) Functional characterization of a kindling-like model of ethanol withdrawal in cortical cultured neurons after chronic intermittent ethanol exposure. Brain Res 767:228–234PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • C. R. Marutha Ravindran
    • 1
  • Ashok K. Mehta
    • 1
  • Maharaj K. Ticku
    • 1
  1. 1.Department of Pharmacology, MC 7764The University of Texas Health Science CenterSan AntonioUSA

Personalised recommendations