Advertisement

Neurochemical Research

, Volume 32, Issue 4–5, pp 905–915 | Cite as

Genetic Influences on Outcome Following Traumatic Brain Injury

  • Barry D. JordanEmail author
Original Paper

Abstract

Several genes have been implicated as influencing the outcome following traumatic brain injury (TBI). Currently the most extensively studied gene has been APOE. APOE can influence overall and rehabilitation outcome, coma recovery, risk of posttraumatic seizures, as well as cognitive and behavioral functions following TBI. Pathologically, APOE is associated with increased amyloid deposition, amyloid angiopathy, larger intracranial hematomas and more severe contusional injury. The proposed mechanism by which APOE affects the clinciopathological consequences of TBI is multifactorial and includes amyloid deposition, disruption of cytoskeletal stability, cholinergic dysfunction, oxidative stress, neuroprotection and central nervous system plasticity in response to injury. Other putative genes have been less extensively studied and require replication of the clinical findings. The COMT and DRD2 genes may influence dopamine dependent cognitive processes such as executive/frontal lobe functions. Inflammation which is a prominent component in the pathophysiological cascade initiated by TBI, is in part is mediated by the interleukin genes, while apoptosis that occurs as a consequence of TBI may be modulated by polymorphisms of the p53 gene. The ACE gene may affect TBI outcome via mechanisms of cerebral blood flow and/or autoregulation and the CACNA1A gene may exert an influence via the calcium channel and its effect on delayed cerebral edema. Although several potential genes that may influence outcome following TBI have been identified, future investigations are needed to validate these genetic studies and identify new genes that might influence outcome following TBI.

Keywords

Genetics Traumatic brain injury APOE Interleukin Dopamine receptor APOE promoter Amyloid Neuroprotection Oxidative stress COMT Apoptosis p53 Angiotensin converting enzyme Alzheimers disease Acetylcholine CACNA1A gene 

References

  1. 1.
    Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923PubMedCrossRefGoogle Scholar
  2. 2.
    Saunders AM, Strittmatter WJ, Schmechel D et al (1993) Association of apolipoprotein E allele ε4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 43:1467–1472PubMedGoogle Scholar
  3. 3.
    Strittmatter WJ, Saunders AM, Schmechel D et al (1993) Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. PNAS 90:1977–1981PubMedCrossRefGoogle Scholar
  4. 4.
    Teasdale GM, Nicoll JAR, Murray G et al (1997) Association of apolipoprotein E polymorphism with outcome after head injury. Lancet 350:1069–1071PubMedCrossRefGoogle Scholar
  5. 5.
    Chiang MF, Chang JG, Hu CJ (2003) Association between apolipoprotein E genotype and outcome of traumatic brain injury. Acta Neurochir 145:649–654CrossRefGoogle Scholar
  6. 6.
    Friedman G, Froom P, Sazbon L et al (1999) Apolipoprotein E e4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology 52:244–248PubMedGoogle Scholar
  7. 7.
    Sorbi S, Benedetta N, Piacentini S et al (1995) ApoE as a prognostic factor for post-traumatic coma. Nature Med 1:852PubMedCrossRefGoogle Scholar
  8. 8.
    Liaquat I, Dunn LT, Nicoll JAR et al (2002) Effect of apolipoprotein E genotype on hematoma volume after trauma. J Neurosurg 96:90–96PubMedGoogle Scholar
  9. 9.
    Diaz-Arrastia R, Gong Y, Fair S et al (2003) Increased risk of late posttraumatic seizures associated with the inheritance of APOE ε4 allele. Arch Neurol 60:818–822PubMedCrossRefGoogle Scholar
  10. 10.
    Lichtman SW, Seliger G, Tycko B et al (2000) Apolipoprotein E and functional recovery from brain injury following postacute rehabilitation. Neurology 55:1536–1539PubMedGoogle Scholar
  11. 11.
    Teasedale TW, Jorgensen OS, Ripa C et al (2000) Apolipoprotein E and subjective symptomatology following brain injury rehabilitation. Neuropsych Rehab 10:151–166CrossRefGoogle Scholar
  12. 12.
    Liberman JN, Stewart WF, Wesnes K et al (2002) Apolipoprotein E ε4 and short-term recovery from predominantly mild brain injury. Neurology 58:1038–1044PubMedGoogle Scholar
  13. 13.
    Sundstrom A, Markland P, Nilsson LG et al (2004) APOE influences on neuropsychological function after mild head injury: within-person comparisons. Neurology 62:1963–1966PubMedGoogle Scholar
  14. 14.
    Crawford FC, Vanderploeg RD, Freeman MJ et al (2002) APOE genotype influences acquisition and recall following traumatic brain injury. Neurology 58:1115–1118PubMedGoogle Scholar
  15. 15.
    Koponen S, Taiminen T, Karisto V et al (2004) APOE-ε4 predicts dementia but not other psychiatric disorders after traumatic brain injury. Neurology 63:749–750PubMedGoogle Scholar
  16. 16.
    Ariza M, Pueyo R, Matarin MD et al (2006) Influence of APOE polymorphism on cognitive and behavioural outcome in moderate and severe traumatic brain injury. J Neurol Neurosurg Psychiatry 77:1191–1193PubMedCrossRefGoogle Scholar
  17. 17.
    Jordan BD, Relkin NR, Ravdin LD et al (1997) Apolipoprotein Ee4 associated with chronic traumatic brain injury in boxing. JAMA 278:136–140PubMedCrossRefGoogle Scholar
  18. 18.
    Kutner KC, Ehrlanger DM, Tsai J et al (2000) Lower cognitive performance of older football players possessing apolipoprotein E ε4. Neurosurgery 47:651–658PubMedCrossRefGoogle Scholar
  19. 19.
    Nicoll JAR, Roberts GW, Graham DI (1995) Apolipoprotein Ee4 allele is associated with deposition of amyloid beta protein following head injury. Nat Med 1:135–137PubMedCrossRefGoogle Scholar
  20. 20.
    Leclercq PD, Graham DI, Nicoll JA et al (2002) Influence of ApoE genotype on cerebral amyloid angiopathy after closed head injury. Neuropathol Appl Neurobiol 28:161CrossRefGoogle Scholar
  21. 21.
    Smith C, Graham DI, Murray L et al (2006) Association of APOE e4 and cerebrovascular pathology in traumatic brain injury. J Neurol Neurosurg Psychiatry 77:363–366PubMedCrossRefGoogle Scholar
  22. 22.
    Teasdale GM, Murray GD, Nicoll JAR (2005) The association between APOE ε4, age and outcome after head injury: a prospective cohort study. Brain 128:2556–2561PubMedCrossRefGoogle Scholar
  23. 23.
    Quinn TJ, Smith C, Murray L et al (2004) There is no evidence of an association in children and teenagers between the apolipoprotein E ε4 allele and post-traumatic brain swelling. Neuropath Appl Neurobiol 30:569–575CrossRefGoogle Scholar
  24. 24.
    Nathoo N, Chetty R, Van Dellen JR et al (2003) apolipoprotein E polymorphism and outcome after closed traumatic brain injury: influence of ethnic and regional differences. J Neurosurg 98:302–306PubMedGoogle Scholar
  25. 25.
    Millar K, Nicoll JAR, Thornhill S et al (2003) Long term neuropsychological outcome after head injury: relation to APOE genotype. J Neurol Neurosurg Psychiatry 74:1047–1052PubMedCrossRefGoogle Scholar
  26. 26.
    Chamelian L, Reis M, Feinstein A (2004) Six-month recovery from mild to moderate traumatic brain injury: the role of APOE-ε4 allele. Brain 127:2621–2628PubMedCrossRefGoogle Scholar
  27. 27.
    Isoniemi H, Kurki T, Tenovuo et al (2006) Hippocampal volume, brain atrophy, and APOE genotype after traumatic brain injury. Neurology 67:756–760PubMedCrossRefGoogle Scholar
  28. 28.
    Hartman KA, Laurer H, Longhi L et al (2002) Apolipoprotein E4 influences amyloid deposition but not cell loss after traumatic brain injury in a mouse model of Alzheimer’s disease. J Neurosci 22:10083–10087PubMedGoogle Scholar
  29. 29.
    Mayeux R, Ottman R, Maestre G et al (1995) Synergistic effects of traumatic head injury and apolipoprotein −ε4 in patients with Alzheimer’s disease. Neurology 45:555–557PubMedGoogle Scholar
  30. 30.
    Katzman R, Galosko DR, Saitoh T et al (1996) Apolipoprotein e4 and head trauma: synergistic or additive risks? Neurology 46:889–892PubMedGoogle Scholar
  31. 31.
    O’Meara ES, Kukull WA, Sheppard L et al (1997) Head injury and risk of Alzheimer’s disease by apolipoprotein E genotype. Am J Epidemiol 146:373–384PubMedGoogle Scholar
  32. 32.
    Mehta KM, Ott A, Kalmijn S et al (1999) Head trauma and risk of dementia and Alzheimer’s disease: the rotterdam study. Neurology 53:1959–1962PubMedGoogle Scholar
  33. 33.
    Plassman BL, Havlik RJ, Steffens DC et al (2000) Documented head injury in early adulthood and risk of Alzheimer’s disease and other dementias. Neurology 55:1158–1166PubMedGoogle Scholar
  34. 34.
    Guo Z, Cupples LA, Kurz A et al (2000) Head injury and the risk of AD in the MIRAGE study. Neurology 54:1316–1323PubMedGoogle Scholar
  35. 35.
    Jellinger KA, Paulus W, Wrocklage C et al (2001) Effects of closed traumatic brain injury and genetic factors on the development of Alzheimer’s disease. Eur J Neurology 8:707–710CrossRefGoogle Scholar
  36. 36.
    Wisniewski T, Castano EM, Golabek et al (1994) Acceleration of Alzheimer’s fibril formation by apolipoprotein E in vitro. Am J Pathol 145:1030–1035PubMedGoogle Scholar
  37. 37.
    Bales KR, Verina T, Dodel RC et al (1997) Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. Nat Genet 17:254–256CrossRefGoogle Scholar
  38. 38.
    Holzman DM, Fagan AM, Mackey B et al (2000) Apolipoprotein E facilitates neuritic and cerebrovascular plaque formation in an Alzheimer’s disease model. Ann Neurol 47:739–747CrossRefGoogle Scholar
  39. 39.
    Schmechel DE, Saunders AM, Strittmatter WJ et al (1993) Increased amyloid β-peptide deposition in cerebral cortex as consequence of apolipoprotein E genotype in late-onset Alzheimer disease. PNAS 90:9649–9653PubMedCrossRefGoogle Scholar
  40. 40.
    Strittmatter WJ, Weisgraber KH, Huang DY et al (1993) Binding of human apolipoprotein E to synthetic amyloid β peptide: isoform-specific effects and implications for late-onset Alzheimer disease. PNAS 90:8098–8102PubMedCrossRefGoogle Scholar
  41. 41.
    Tesseur I, Van Dorpe J, Spittaels K et al (2000) Expression of human apolipoprotein E4 in neurons causes hyperphosphorylation of protein tau in the brains of transgenic mice. Am J Pathol 156:951–964PubMedGoogle Scholar
  42. 42.
    Strittmatter WJ, Saunders AM, Goedert M et al (1994) Isoform-specific interactions of apolipoprotein E with microtubule-associated protein tau: implications for Alzheimer disease. PNAS 91:11183–11186PubMedCrossRefGoogle Scholar
  43. 43.
    Gordon I, Grauer E, Genis I et al (1995) Memory deficits and cholinergic impairments in apolipoprotein E-deficient mice. Neurosci Lett 199:1–4PubMedCrossRefGoogle Scholar
  44. 44.
    Poirer J (1996) Apolipoprotein E in the brain and its role in Alzheimer’s disease. J Psychiat Neurosci 21:128–134Google Scholar
  45. 45.
    Soininen H, Kosunen O, Helisalmi et al (1995) A severe loss of choline acetyltransferase in the frontal cortex of Alzheimer patients carrying apolipoprotein ε4 allele. Neurosci Lett 187:79–82PubMedCrossRefGoogle Scholar
  46. 46.
    Lomnitski L, Chapman S, Hochman A et al (1999) Antioxidant mechanisms in apolipoprotein E deficient mice prior to and following closed head injury. Biochim Biophys Acta 1453:359–368PubMedGoogle Scholar
  47. 47.
    Wallis RA, Panizzon KL, Teter B et al (1999) Protection with MK-801 against susceptibility of mice expressing human apolipoprotein E4 to CA1 neuronal injury from trauma and oxidative stress. J Neurotrauma 16:986Google Scholar
  48. 48.
    Tamaoka A, Miyatake F, Matsuno S et al (2000) Apolipoprotein E allele dependent antioxidant activity in brains with Alzheimer’s disease. Neurology 54:2319–2321PubMedGoogle Scholar
  49. 49.
    Gibson GE, Haroutunian V, Zhang H et al (2000) Mitochondrial damage in Alzheimer’s disease varies with apolipoprotein E genotype. Ann Neurol 48:297–303PubMedCrossRefGoogle Scholar
  50. 50.
    Roses AD, Saunders AM (2006) Perspective on a pathogenesis and treatment of Alzheimer’s disease. Alzheimer’s Dementia 2:59–70CrossRefGoogle Scholar
  51. 51.
    Chen Y, Lomnitski L, Michaelson DM et al (1997) Motor and cognitive deficits in apolipoprotein E deficient mice after closed head injury. Neuroscience 80:1255–1262PubMedCrossRefGoogle Scholar
  52. 52.
    Zarow C, Victoroff J (1998) Increased apolipoprotein E mRNA in the hippocampus in Alzheimer disease and in rats after entorhinal cortex lesioning. Exp Neurol 149:79–86PubMedCrossRefGoogle Scholar
  53. 53.
    Nathan BP, Bellosta S, Sanan DA et al (1994) Differential effects of apolipoprotein E3 and E4 on neuronal growth in vitro. Science 264:850–852PubMedCrossRefGoogle Scholar
  54. 54.
    Levi O, Jongen-Relo AL, Feldon J et al (2003) ApoE4 impairs hippocampal plasticity isoform-specifically and blocks the environmental stimulation of synaptogenesis and memory. Neurobiol Dis 13:273–282PubMedCrossRefGoogle Scholar
  55. 55.
    Sabo T, Lomnitski L, Nyska A et al (2000) Susceptibility of transgenic mice expressing human apolipoprotein E to closed head injury: the allele E3 is neuroprotective whereas E4 increases fatality. Neuroscience 101:879–884PubMedCrossRefGoogle Scholar
  56. 56.
    Iwata A, Browne KD, Chen XH et al (2005) Traumatic brain injury induces biphasic upregulation of ApoE and ApoJ protein in rats. J Neurosci Res 82:103–114PubMedCrossRefGoogle Scholar
  57. 57.
    Aono M, Lee Y, Grant ER et al (2002) Apolipoprotein E protects against NMDA excitotoxicity. Neurobiol Dis 11:214–220PubMedCrossRefGoogle Scholar
  58. 58.
    McAdoo JD, Warner DS, Goldberg RN et al (2005) Intrathecal administration of a novel apoE-derived therapeutic peptide improves outcome following perinatal hypoxic-ischemic injury. Neurosci Lett 381:305–308PubMedCrossRefGoogle Scholar
  59. 59.
    Lynch JR, Wang H, Mace B et al (2005) A novel therapeutic derived from apolipoprotein E reduces brain inflammation and improves outcome after closed head injury. Exp Neurology 192:109–116CrossRefGoogle Scholar
  60. 60.
    Aono M, Bennett ER, Kim KS et al (2003) Protective effect of apolipoprotein E-mimetic peptides on N-methyl-D-aspartate excitotoxicity in primary rat neuronal-glial cell cultures. Neuroscience 116:437–445PubMedCrossRefGoogle Scholar
  61. 61.
    Artiga MJ, Bullido MJ, Sastre I et al (1998) Allelic polymorphisms in the transcriptional regulatory region of apolipoprotein E gene. FEBS Lett 421:105–108PubMedCrossRefGoogle Scholar
  62. 62.
    Lambert JC, Araria-Goumidi L, Myllykangas L et al (2002) Contribution of APOE promoter polymorphisms to Alzheimer’s disease risk. Neurology 59:59–66PubMedGoogle Scholar
  63. 63.
    Lambert JC, Mann D, Goumidi L et al (2001) Effect of the APOE promoter polymorphisms on cerebral amyloid deposition in Alzheimer’s disease. Lancet 357:608–609PubMedCrossRefGoogle Scholar
  64. 64.
    Lambert JC, Mann D, Richard F et al (2005) Is there a relation between APOE expression and brain amyloid load in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:928–933PubMedCrossRefGoogle Scholar
  65. 65.
    Lendon CL, Harris JM, Pritchard AL et al (2003) Genetic variation of the APOE promoter and outcome after head injury. Neurology 61:683–685PubMedGoogle Scholar
  66. 66.
    Weinshilboum RM, Otterness DM, Szumlanski CL (1999) Methylation pharmacogenetics: catechol O-metyltransferase, thiopurine methyltransferase, and histamine N-methyltransferase. Annu Rev Pharmacol Tox 39:19–52CrossRefGoogle Scholar
  67. 67.
    Akil M, Kolachana BS, Rothmond DA et al (2003) Catechol-O-methyltransferase genotype and dopamine regulation in the human brain. J Neurosci 23:2008–2013PubMedGoogle Scholar
  68. 68.
    Diaz-Asper CM, Weinberger DR, Goldberg TE (2006) Catechol-O-methyltransferase polymorphisms and some implications for cognitive therapeutics. NeuroRx 23:97–105CrossRefGoogle Scholar
  69. 69.
    Malhorta AK, Kestler LJ, Mazzanti C et al (2002) A functional polymorphism in the COMT gene and performance on a test of prefrontal function. Am J Psychiatry 159:652–654CrossRefGoogle Scholar
  70. 70.
    Lipsky RH, Sparling MB, Ryan LM et al (2005) Association of COMT Val158Met genotype with executive functioning following traumatic brain injury. J Neuropsychiatry Clin Neurosci 17:465–471PubMedGoogle Scholar
  71. 71.
    Flashman LA, Saykin AJ, Rhodes CH et al (2004) Effect of COMT Val/Met genotype on frontal lobe functioning in traumatic brain injury. J Neuorpschiatry Clin Neurosci 16:238–239Google Scholar
  72. 72.
    Ritchie T, Noble EP (2003) Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics. Neurochem Res 28:73–82PubMedCrossRefGoogle Scholar
  73. 73.
    Small GW, Noble EP, Matsuyama SS et al (1997) D2 dopamine receptor A1 allele in Alzheimer disease and aging. Arch Neurol 54:281–285PubMedGoogle Scholar
  74. 74.
    McAllister TW, Rhodes CH, Flashman LA et al (2005) Effect of dopamine D2 receptor T allele on response latency after mild traumatic brain injury. Am J Psychiatry 162:1749–1751PubMedCrossRefGoogle Scholar
  75. 75.
    Nicklin MJ, Weith A, Duff GW (1994) A physical map of the region encompassing the human interleukin-1 alpha, interleukin-1 beta, and interleukin-1receptor agonist genes. Genomics 19:382–384PubMedCrossRefGoogle Scholar
  76. 76.
    Murzin AG, Lesk AM (1992) Beta-Trefoil fold. Patterns of structure and sequence in the Kunitz inhibitors interleukins-1beta and 1 alpha and fibroblast growth factors. J Mol Biol 223:531–543PubMedCrossRefGoogle Scholar
  77. 77.
    Grimaldi LME, Casedei VM, Veglia F et al (2000) Association of early-onset Alzheimer’s disease with an interleukin-1α gene polymorphism. Ann Neurol 47:361–365PubMedCrossRefGoogle Scholar
  78. 78.
    Nicoll JA, Mrak RE, Graham DI et al (2000) Association of interleukin-1gene polymorphisms with Alzheimer’s disease. Ann Neurol 47:365–368PubMedCrossRefGoogle Scholar
  79. 79.
    Du Y, Dodel RC, Eastwood BJ et al (2000) Association of an interleukin 1α polymorphism with Alzheimer’s disease. Neurology 55:480–483PubMedGoogle Scholar
  80. 80.
    Rainero I, Bo M, Ferrero M et al (2004) Association between the interleukin gene and Alzheimer’s disease: a meta-analysis. Neurobiol Aging 25:1293–1298PubMedCrossRefGoogle Scholar
  81. 81.
    Pociot F, Moivig J, Wogensen L et al (1992) A taq1 polymorphism in the human interleukin-1 beta (IL-1 beta) gene correlates with IL-1 beta secretion in vitro. Eur J Clin Invest 22:396–402PubMedGoogle Scholar
  82. 82.
    di Giovine FS, Takhsh E, Blakemore AI, Duff GW (1992) Single base polymorphism at −511 in the human interleukin-1 beta gene (IL-1 beta). Hum Mol Genet 1:450PubMedCrossRefGoogle Scholar
  83. 83.
    Santilla S, Savinainen K, Hurme M (1998) Presence of the IL-1RA allele 2 (IL1rn*2) is associated with enhanced IL-1beta production in vitro. Scand J Immunol 47:195–198CrossRefGoogle Scholar
  84. 84.
    Yucesoy B, Peila R, White LR et al (2006) Association of interleukin-1 gene polymorphisms with dementia in a community-based sample: the Honolulu-Asia aging study. Neurobiol Aging 27:211–217PubMedCrossRefGoogle Scholar
  85. 85.
    Uzan M, Tanriverdi T, Baykara et al (2005) Association between interleukin-1beta (IL-1β) gene polymorphism and outcome after head injury: an early report. Acta Neurochir 147:715–720CrossRefGoogle Scholar
  86. 86.
    Tanriverdi T, Uzan M, Sanus GZ et al (2006) Lack of an association between the IL1A gene (−889) polymorphism and outcome after head injury. Surg Neurol 65:7–10PubMedCrossRefGoogle Scholar
  87. 87.
    Hadjigeorgiou GM, Paterakis K, Dardiotis E et al (2005) IL-1RN and IL-1B gene polymorphisms and cerebral hemorrhagic events after traumatic brain injury. Neurology 65:1077–1082PubMedCrossRefGoogle Scholar
  88. 88.
    Winter CD, Pringle AK, Clough GF et al (2004) Raised parenchymal interleukin-6 levels correlate with improved outcome after traumatic brain injury. Brain 127:315–320PubMedCrossRefGoogle Scholar
  89. 89.
    Minambres E, Cemborian A, Sanchez-Velasco P et al (2003) Correlation between transcranial interleukin-6 gradient and outcome inpatients with acute brain injury. Crit Care Med 31:933–938PubMedCrossRefGoogle Scholar
  90. 90.
    Raghupathi R, Graham DI, McIntosh TK (2000) Apoptosis after traumatic brain injury. J neurotrauma 17:927–938PubMedCrossRefGoogle Scholar
  91. 91.
    Fisher DE (2001) The p53 tumor suppressor: critical regulator of life & death in cancer. Apoptosis 6:7–15PubMedCrossRefGoogle Scholar
  92. 92.
    Ara S, Lee PSY, Hansen MF, Saya H (1990) Codon 72 polymorphism of the TP53 gene. Nucleic Acids Res 18:4961PubMedCrossRefGoogle Scholar
  93. 93.
    Dumont P, Leu JI, Della Pietra AC et al (2003) The codon 72 polymorphic variants of p53 have markedly different apoptotic potential. Nat Genet 33:357–365PubMedCrossRefGoogle Scholar
  94. 94.
    Martinez-Lucas P, Moreno-Cuesta J, Sanchez-Sanchez F et al (2005) Relationship between the Arg72Pro polymorphism of p53 and outcome for patients with traumatic brain injury. Intensive Care Med 31:1168–1173PubMedCrossRefGoogle Scholar
  95. 95.
    Erdos EG, Skidgel RA (1987) The angiotensin I converting enzyme. Lab Invest 56:345–348PubMedGoogle Scholar
  96. 96.
    Rigat B, Hubert C, Alhenc-Geias F et al (1990) An insertion/deletion polymorphism in the angiotensin I-converting enzyme gen accounting for half the variance of serum enzyme levels. J Clin Invest 86:1343–1346PubMedCrossRefGoogle Scholar
  97. 97.
    Tiret L, Rigat B, Visvikis S et al (1992) Evidence from combined segregation and linkage analysis, that a variant of the angiotensin I-converting enzyme (ACE) gene controls plasma ACE levels. Am J Hum Genet 51:197–205PubMedGoogle Scholar
  98. 98.
    Narain Y, Yip A, Murphy T et al (2000) The ACE gene and Alzheimer’s disease susceptibility. J Med Genet 37:695–697PubMedCrossRefGoogle Scholar
  99. 99.
    Elkins JS, Douglas VC, Johnston SC (2004) Alzheimer disease risk and genetic variation in ACE. Neurology 62:363–368PubMedGoogle Scholar
  100. 100.
    Amouyel P, Richard F, Cottel D et al (1996) The deletion allele of the angiotensin I converting enzyme gene as a genetic susceptibility factor for cognitive impairment. Neurosci Lett 217:203–205PubMedCrossRefGoogle Scholar
  101. 101.
    Richard F, Berr C, Amant C et al (2000) Effect of the angiotensin I-converting enzyme I/D polymorphism on cognitive decline. The EVA study group. Neurobiol Aging 21:75–80PubMedCrossRefGoogle Scholar
  102. 102.
    Stewart R, Powell J, Prince M, Mann A (2004) ACE genotype and cognitive decline in an African-Caribbean population. Neurobiol Aging 25:1369–1375PubMedCrossRefGoogle Scholar
  103. 103.
    Richard F, Fromentin-David I, Ricolfi F et al (2001) The angiotensin I converting enzyme gene as a susceptibility factor for dementia. Neurology 56:1593–1595PubMedGoogle Scholar
  104. 104.
    Ariza M, Matarin MD, Jungue C et al (2006) Influence of the angiotensin-converting enzyme polymorphism on neuropsychological subacute performance in moderate and severe traumatic brain injury. J Neuropschiatry Clin Neurosci 18:39–44Google Scholar
  105. 105.
    Hu J, Igarashi A, Kamata M et al (2001) Angiotensin-converting enzyme degrades Alzheimer amyloid β-peptide (Aβ); Retards Aβ aggregation, deposition, fibril formation: and inhibits cytotoxicity. J Biol Chem 278:47863–47868Google Scholar
  106. 106.
    Kors EE, Terwindt GM, Vermeulen FL et al (2001) Delayed cerebral edema and fatal coma after minor head trauma: role of the CACNA1A calcium channel subunit gene and relationship with familial hemiplegic migraine. Ann Neurol 49:753–760PubMedCrossRefGoogle Scholar
  107. 107.
    Nicoll JAR, Roberts GW, Graham DI (1996) Amyloid β-protein, APOE genotype and head injury. Ann NY Acad Sci 777:271–275PubMedCrossRefGoogle Scholar
  108. 108.
    Jordan BD (2000) Chronic traumatic brain injury associated with boxing. Sem Neurology 20:179–185CrossRefGoogle Scholar
  109. 109.
    Colhoun HM, McKeigue PM, Smith GD (2003) Problems of reporting genetic associations with complex outcomes. Lancet 361:865–872PubMedCrossRefGoogle Scholar
  110. 110.
    Ioannidis JPA, Ntzani EE, Trikalinos TA et al (2001) Replication validity of genetic association studies. Nat Genetics 29:306–309CrossRefGoogle Scholar
  111. 111.
    Yoshiya K, Tanake H, Kasai K et al (2003) Profile of gene expression in the subventricular zone after traumatic brain injury. J Neurotrauma 20:1147–1162PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Brain Injury ProgramBurke Rehabilitation HospitalWhite PlainsUSA
  2. 2.Department of NeurologyWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations