Neurochemical Research

, Volume 32, Issue 6, pp 965–972

Antioxidant Effects of SelegilIne in Oxidative Stress Induced by Iron Neonatal Treatment in Rats

  • Patrícia Budni
  • Maria Noemia Martins de Lima
  • Manuela Polydoro
  • José Cláudio Fonseca Moreira
  • Nadja Schroder
  • Felipe Dal-Pizzol
Original Paper

Abstract

Increased levels of iron in specific brain regions have been reported in neurodegenerative disorders. It has been postulated that iron exerts its deleterious effects on the nervous system by inducing oxidative damage. In a previous study, we have shown that iron administered during a particular period of the neonatal life induces oxidative damage in brain regions in adult rats. The aim of the present study was to evaluate the possible protective effect of selegiline, a monoamino-oxidase B (MAO-B) inhibitor used in pharmacotherapy of Parkinson’s disease, against iron-induced oxidative stress in the brain. Results have shown that selegiline (1.0 and 10.0 mg/kg), when administered early in life was able to protect the substantia nigra as well as the hippocampus against iron-induced oxidative stress, without affecting striatum. When selegiline (10.0 mg/kg) was administered in the adult life to iron-treated rats, oxidative stress was reduced only in the substantia nigra.

Keywords

Oxidative stress Iron Selegiline Substantia nigra Hippocampus Neuroprotection 

References

  1. 1.
    Floyd RA, Hensley K (2002) Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23(5):795–807PubMedCrossRefGoogle Scholar
  2. 2.
    Halliwell B, Gutteridge JMC (1999) Free radicals in biology and medicine. Oxford University Press, OxfordGoogle Scholar
  3. 3.
    Halliwell B, Gutteridge JMC (1990) Role of free radicals and catalytic metal ions in human disease: an overview. Meth Enzymol 186:1–85PubMedGoogle Scholar
  4. 4.
    Petrat F, de Groot H, Sustmann R et al (2002) The chelatable iron pool in living cells: a methodically defined quantity. Biol Chem 383:489–502PubMedCrossRefGoogle Scholar
  5. 5.
    Ryan TP, Aust SD (1992) The role of iron in oxygen-mediated toxicities. Crit Rev Toxicol 22:119–141PubMedGoogle Scholar
  6. 6.
    Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336PubMedCrossRefGoogle Scholar
  7. 7.
    Milman N, Pedersen P, Steig T et al (2001) Clinically overt hereditary hemochromatosis in Denmark 1948/1985: epidemiology, factors of significance for long-term survival, and causes of death in 179 patients. Ann Hematol 80:737–744PubMedCrossRefGoogle Scholar
  8. 8.
    Rasmussen M, Folsom AR, Catellier DJ et al (2001) A prospective study of coronary heart disease and the hemochromatosis gene (HFE) C282Y mutation: the atherosclerosis risk in communities (ARIC) study. Atherosclerosis 154:739–746PubMedCrossRefGoogle Scholar
  9. 9.
    Rauen U, Petrat F, Sustmann R et al (2004) Iron-induced mitochondrial permeability transition in cultured hepatocytes. J Hepatol 40(4):607–615PubMedCrossRefGoogle Scholar
  10. 10.
    Yang Q, McDonnell SM, Khoury MJ et al (1998) Hemochromatosis-associated mortality in the United States from 1979 to 1992: an analysis of Multiple-Cause Mortality Data. Ann Intern Med 129: 946–953PubMedGoogle Scholar
  11. 11.
    Beckman LE, Van Landeghem GF, Sikstrom C et al (1999) Interaction between hemochromatosis and transferrin receptor genes in different neoplastic disorders. Carcinogenesis 20: 1231–1233PubMedCrossRefGoogle Scholar
  12. 12.
    Li J, Zhu Y, Singal DP (2000) HFE gene mutations in patients with rheumatoid arthritis. J Rheumatol 27:2074–2077PubMedGoogle Scholar
  13. 13.
    Walker EMJ, Walker SM (2000) Effects of iron overload on the immune system. Ann Clin Lab Sci 30:354–365PubMedGoogle Scholar
  14. 14.
    Berg D, Gerlach M, Youdim MBH et al (2001) Brain iron pathways and their relevance to Parkinson´s disease. J Neurochem 79:225–236PubMedCrossRefGoogle Scholar
  15. 15.
    Sayre LM, Perry G, Atwood CS (2000) The role of metals in neurodegenerative diseases. Cell Mol Biol 46:731–741PubMedGoogle Scholar
  16. 16.
    Floyd RA, Carney JM (1992). Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 32(Suppl):S22–S27PubMedCrossRefGoogle Scholar
  17. 17.
    Hill JM, Switzer RC (1984) The regional distribution and cellular localization of iron in the rat brain. Neuroscience 11(3):595–603PubMedCrossRefGoogle Scholar
  18. 18.
    Kim NH, Park SJ, Jin JK et al (2000) Increased ferric iron content and iron-induced oxidative stress in the brains of scrapie-infected mice. Brain Res 884(1–2):98–103Google Scholar
  19. 19.
    Dexter DT, Carayon A, Javoy-Agid F et al (1991) Alterations in the levels of iron, ferritin and other trace metals in Parkinson’s disease and other neurodegenerative diseases affecting the basal ganglia. Brain 114(Pt 4):1953–1975PubMedCrossRefGoogle Scholar
  20. 20.
    Dexter DT, Wells FR, Lees AJ et al (1994) Increased nigral iron content and alteration in other metal ions occurring in brain in Parkinson’s disease. J Neurochem 52:1830–1836CrossRefGoogle Scholar
  21. 21.
    Jellinger KA (1999) The role of iron in neurodegeneration: prospects for pharmacotherapy of Parkinson’s disease. Drugs Aging 14(2):115–140PubMedCrossRefGoogle Scholar
  22. 22.
    Halliwell B (1989) Oxidants and the central nervous system: some fundamental questions. Is oxidant damage relevant to Parkinson’s disease, Alzheimer’s disease, traumatic injury or stroke? Acta Neurol Scand Suppl 126:23–33PubMedGoogle Scholar
  23. 23.
    Lee DW, Sohn HO, Lim HB et al (1999) Alteration of free radical metabolism in the brain of mice infected with scrapie agent. Free Radic Res 30(6):499–507PubMedCrossRefGoogle Scholar
  24. 24.
    Liu R, Liu IY, Bi X et al (2003) Reversal of age-related learning deficits and brain oxidative stress in mice with superoxide dismutase/catalase mimetics Proc. Natl Acad Sci USA 100(14):8526–8531CrossRefGoogle Scholar
  25. 25.
    Fernandez-Espejo E (2004) Pathogenesis of Parkinson’s disease: prospects of neuroprotective and restorative therapies. Mol Neurobiol 29(1):15–30PubMedCrossRefGoogle Scholar
  26. 26.
    Kiray M, Bagriyanik HA, Pekcetin C et al (2006) Deprenyl and the relationship between its effects on spatial memory, oxidant stress and hippocampal neurons in aged male rats. Physiol Res 55(2):205–212PubMedGoogle Scholar
  27. 27.
    Magyar K, Szende B (2004) (-)-Deprenyl, a selective MAO-B inhibitor, with apoptotic and anti-apoptotic properties. Neurotox 25(1–2):233–242CrossRefGoogle Scholar
  28. 28.
    Magyar K, Szende B, Lengyel J et al (1996) The pharmacology of B-type selective monoamine oxidase inhibitors; milestones in (-)-deprenyl research. J Neural Transm Suppl 48:29–43PubMedGoogle Scholar
  29. 29.
    Olanow CW (1996) Deprenyl in the treatment of Parkinson’s disease: clinical effects and speculations on mechanism of action. J Neural Transm Suppl 48:75–84PubMedGoogle Scholar
  30. 30.
    Heinonen EH, Lammintausta R.A (1991) Review of the pharmacology of selegiline. Acta Neurol Scand Suppl 136:44–59PubMedCrossRefGoogle Scholar
  31. 31.
    De Lima MN, Polydoro M, Laranja DC et al (2005) Recognition memory impairment and brain oxidative stress induced by postnatal iron administration. Eur J Neurosci 21(9):2521–2528PubMedCrossRefGoogle Scholar
  32. 32.
    Schröder N, Fredriksson A, Vianna MRM et al (2001) Memory deficits in adult rats following postnatal iron administration. Behav Brain Res 124:77–85PubMedCrossRefGoogle Scholar
  33. 33.
    Brandeis R, Sapir M, Kapon Y et al (1991) Improvement of cognitive function by MAO-B inhibitor L-deprenyl in aged rats. Pharmacol Biochem Behav 39(2):297–304PubMedCrossRefGoogle Scholar
  34. 34.
    De Lima MN, Laranja DC, Caldana F et al (2005) Selegiline protects against recognition memory impairment induced by neonatal iron treatment. Exp Neurol 196(1):177–183PubMedCrossRefGoogle Scholar
  35. 35.
    Head E, Hartley J, Kameka AM et al (1996) The effects of l-deprenyl on spatial short term memory in young and aged dogs. Prog Neuropsychopharmacol Biol Psychiatry 20:515–530PubMedCrossRefGoogle Scholar
  36. 36.
    Kiray M, Uysal N, Sonmez A et al (2004) Positive effects of deprenyl and estradiol on spatial memory and oxidant stress in aged female rat brains. Neurosci Lett 354(3):225–228PubMedCrossRefGoogle Scholar
  37. 37.
    Kiray M, Bagriyanik HA, Pekcetin C et al (2006) Deprenyl and the relationship between its effects on spatial memory, oxidant stress and hippocampal neurons in aged male rats. Physiol Res 55(2):205–212PubMedGoogle Scholar
  38. 38.
    Maia FD, Pitombeira BS, Araujo DT et al (2004) l-Deprenyl prevents lipid peroxidation and memory deficits produced by cerebral ischemia in rats. Cell Mol Neurobiol 24:87–100PubMedCrossRefGoogle Scholar
  39. 39.
    Stoll S, Hafner U, Pohl O et al (1994) Age-related memory decline and longevity under treatment with selegiline. Life Sci 55:2155–2163PubMedCrossRefGoogle Scholar
  40. 40.
    Yavich L, Sirvio J, Heinonen E et al (1993) The interaction of L-deprenyl and scopolamine on spatial learning/memory in rats. J Neural Transm Park Dis Dement Sect 6(3):189–97PubMedCrossRefGoogle Scholar
  41. 41.
    Esterbauer H, Cheeseman KH et al (1990) Determination of aldehydic lipid peroxidation products: malonaldehyde and 4-hydroxynonenal. Meth Enzymol 186:407–421PubMedCrossRefGoogle Scholar
  42. 42.
    Lowry OH, Rosebrough NJ, Farr AL et al (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193(1):265–275PubMedGoogle Scholar
  43. 43.
    Dal-Pizzol F, Klamt F, Frota ML Jr et al (2001) Neonatal iron exposure induces oxidative stress in adult Wistar rat. Brain Res Dev Brain Res 130(1):109–114PubMedCrossRefGoogle Scholar
  44. 44.
    Connor JR, Pavlick G, Karli D et al (1995) A histochemical study of iron-positive cells in the developing rat brain. J Comp Neurol 355:111–123PubMedCrossRefGoogle Scholar
  45. 45.
    Taylor EM, Morgan EH (1990) Developmental changes in transferrin and iron uptake by the brain in the rat. Brain Res Dev Brain Res 55:35–42PubMedCrossRefGoogle Scholar
  46. 46.
    Dwork AJ, Lawler G, Zybert PA et al (1990) An autoradiographic study of the uptake and distribution of iron by the brain of the young rat. Brain Res 518:31–39PubMedCrossRefGoogle Scholar
  47. 47.
    Fredriksson A, Schroder N, Eriksson P et al (1999) Neonatal iron exposure induces neurobehavioural dysfunctions in adult mice. Toxicol Appl Pharmacol 159(1):25–30PubMedCrossRefGoogle Scholar
  48. 48.
    Youdim MB, Fridkin M, Zheng H (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 126(2):317–326PubMedCrossRefGoogle Scholar
  49. 49.
    Riederer P, Sofic E, Rausch WD et al (1989) Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 52:515–520PubMedCrossRefGoogle Scholar
  50. 50.
    Roskams AJ, Connor JR (1994) Iron, transferrin, and ferritin in the rat brain during development and aging. J Neurochem 63:709–716PubMedCrossRefGoogle Scholar
  51. 51.
    Polla AS, Polla LL, Polla BS (2003) Iron as the malignant spirit in successful ageing. Ageing Res Rev 2: 25–37PubMedCrossRefGoogle Scholar
  52. 52.
    Gerlach M, Foley P, Riederer P (2003) The relevance of preclinical studies for the treatment of Parkinson’s disease. J Neurol 250(Suppl): I/31–I/34Google Scholar
  53. 53.
    Henchcliffe C, Schumacher HC, Burgut FT (2005) Recent advances in Parkinson’s disease therapy: use of monoamine oxidase inhibitors. Expert Rev Neurother 5(6):811–821PubMedCrossRefGoogle Scholar
  54. 54.
    Pallhagen S, Heinonen E, Hägglund J et al (2006) Selegiline slows the progression of the symptoms of Parkinson disease. Neurology 66(8):1200–1206CrossRefGoogle Scholar
  55. 55.
    Ebadi M, Sharma S, Shavali S et al (2002) Neuroprotective actions of selegiline.J. Neurosci Res 67(3):285–9CrossRefGoogle Scholar
  56. 56.
    Cohen G, Pasik P, Cohen B et al (1984) Pargyline and deprenyl prevent the neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in monkeys. Eur J Pharmacol 106:209–210PubMedCrossRefGoogle Scholar
  57. 57.
    Matsubara K, Senda T, Uezono T et al (2001) L-deprenyl prevents the cell hypoxia induced by dopaminergic neurotoxins, MPP+, and β-carbolinium: a microdialysis study in rats. Neurosci Lett 302:65–68PubMedCrossRefGoogle Scholar
  58. 58.
    Spooren WP, Waldmeier P, Gentsch C (1999) The effect of a subchronic post-lesion treatment with (-)-deprenyl on the sensitivity of 6-OHDA-lesioned rats to apomorphine and d-amphetamine. J Neural Transm 106:825–833PubMedCrossRefGoogle Scholar
  59. 59.
    Carrillo MC, Kanai S, Nokubo M et al (1992) (-)Deprenyl increases activities of superoxide dismutase and catalase in striatum but not in hippocampus: the sex and age-related differences in the optimal dose in the rat. Exp Neurol 116(3):286–294PubMedCrossRefGoogle Scholar
  60. 60.
    Kitani K, Minami C, Isobe K et al (2002) Why (–)deprenyl prolongs survivals of experimental animals: increase of anti-oxidant enzymes in brain and other body tissues as well as mobilization of various humoral factors may lead to systemic anti-aging effects. Mech Ageing Dev 123(8):1087–1100PubMedCrossRefGoogle Scholar
  61. 61.
    Youdim MB, Fridkin M, Zheng H. (2005) Bifunctional drug derivatives of MAO-B inhibitor rasagiline and iron chelator VK-28 as a more effective approach to treatment of brain ageing and ageing neurodegenerative diseases. Mech Ageing Dev 126(2):317–26PubMedCrossRefGoogle Scholar
  62. 62.
    Long DA, Ghosh K, Moore AN et al (1996) Deferoxamine improves spatial memory performance following experimental brain injury in rats. Brain Res 717(1–2):109–17PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Patrícia Budni
    • 1
    • 2
  • Maria Noemia Martins de Lima
    • 3
  • Manuela Polydoro
    • 4
  • José Cláudio Fonseca Moreira
    • 4
  • Nadja Schroder
    • 3
  • Felipe Dal-Pizzol
    • 1
    • 5
  1. 1.Laboratório de Fisiopatologia ExperimentalUniversidade do Extremo Sul CatarinenseCriciumaBrazil
  2. 2.Programa de Pós-graduação em Ciências AmbientaisUniversidade do Extremo Sul CatarinenseCriciumaBrazil
  3. 3.Programa de Pós-graduação em Gerontologia Biomédica, Departamento de Ciências Fisiológicas, Faculdade de BiociênciasPontificia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  4. 4.Centro de Estudos em Estresse Oxidativo, Departamento de BioquímicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  5. 5.Programa de Pós-graduação de Ciências da SaúdeUniversidade do Extremo Sul CatarinenseCriciumaBrazil

Personalised recommendations