Neurochemical Research

, Volume 32, Issue 4–5, pp 893–904 | Cite as

The Impact of Nutrition on Cognition in the Elderly

Original Paper

Abstract

The possibility that nutritional manipulation may protect against cognitive decline and dementia is an inviting prospect. However data supporting a beneficial effect of a particular dietary pattern is limited. Although studies have demonstrated a health benefit to dietary plans that are high in fiber, whole grains, natural sugar and fish while maintaining lower intake in meat dairy and poultry, the ability to identify the most salient factors of these diets have been unsuccessful. Several aspects of diet have been studied in detail and provided support for potential mechanisms for improving cognition. Clinical trials have explored these mechanisms through supplementation studies with minimal benefits being observed. Continuing work to hone the mechanisms and refine our knowledge of dietary benefits is described.

Keywords

Alzheimer’s Disease Dementia Cognitive Impairment Nutrition 

References

  1. 1.
    Lee L, Kang SA, Lee HO, Lee BH, Park JS, Kim JH, Jung IK, Park YJ, Lee JE (2001) Relationships between dietary intake and cognitive function level in Korean elderly people. Public Health 115(2):133–138PubMedCrossRefGoogle Scholar
  2. 2.
    Requejo AM, Ortega RM, Robles F, Navia B, Faci M, Aparicio A (2003) Influence of nutrition on cognitive function in a group of elderly, independently living people. Eur J Clin Nutr 57(Suppl 1):S54–S57PubMedCrossRefGoogle Scholar
  3. 3.
    Trichopoulou A, Costacou T, Bamia C, Trichopoulos D (2003) Adherence to a Mediterranean diet and survival in a Greek population. N Engl J Med 348(26):2599–2608PubMedCrossRefGoogle Scholar
  4. 4.
    Scarmeas N, Stern Y, Tang MX, Mayeux R, Luchsinger JA (2006) Mediterranean diet and risk for Alzheimer’s disease. Ann Neurol 59(6):912–921PubMedCrossRefGoogle Scholar
  5. 5.
    Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Wilson RS, Aggarwal N, Schneider J (2003) Consumption of fish and n-3 fatty acids and risk of incident Alzheimer disease. Arch Neurol 60(7):940–946PubMedCrossRefGoogle Scholar
  6. 6.
    Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS (2005) Fish consumption and cognitive decline with age in a large community study. Arch Neurol 62(12):1849–1853PubMedCrossRefGoogle Scholar
  7. 7.
    Kalmijn S, Launer LJ, Ott A, Witteman JC, Hofman A, Breteler MM (1997) Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 42(5):776–782PubMedCrossRefGoogle Scholar
  8. 8.
    Kalmijn S, Feskens EJ, Launer LJ, Kromhout D (1997) Polyunsaturated fatty acids, antioxidants, and cognitive function in very old men. Am J Epidemiol 145(1):33–41PubMedGoogle Scholar
  9. 9.
    Morris MC, Evans DA, Bienias JL, Tangney CC, Bennett DA, Aggarwal N, Schneider J, Wilson RS (2003) Dietary fats and the risk of incident Alzheimer disease. Arch Neurol 60(2):194–200PubMedCrossRefGoogle Scholar
  10. 10.
    Solfrizzi V, Panza F, Torres F, Mastroianni F, Del Parigi A, Venezia A, Capurso A (1999) High monounsaturated fatty acids intake protects against age-related cognitive decline. Neurology 52(8):1563–1569PubMedGoogle Scholar
  11. 11.
    Solfrizzi V, Colacicco AM, D’Introno A, Capurso C, Torres F, Rizzo C, Capurso A, Panza F (2006) Dietary intake of unsaturated fatty acids and age-related cognitive decline: A 8.5-year follow-up of the Italian Longitudinal Study on Aging. Neurobiol Aging. Available online 26 October 2005Google Scholar
  12. 12.
    Solfrizzi V, Colacicco AM, D’Introno A, Capurso C, Del Parigi A, Capurso SA, Argentieri G, Capurso A, Panza F (2006) Dietary fatty acid intakes and rate of mild cognitive impairment. The Italian Longitudinal Study on Aging. Exp Gerontol 41(6):619–627PubMedCrossRefGoogle Scholar
  13. 13.
    Whalley LJ, Fox HC, Wahle KW, Starr JM, Deary IJ (2004) Cognitive aging, childhood intelligence, and the use of food supplements: possible involvement of n-3 fatty acids. Am J Clin Nutr 80(6):1650–1657PubMedGoogle Scholar
  14. 14.
    Manzato E, Roselli della Rovere G, Zambon S, Romanato G, Corti MC, Sartori L, Baggio G, Crepaldi G (2003) Cognitive functions are not affected by dietary fatty acids in elderly subjects in the Pro. V.A. study population. Aging Clin Exp Res 15(1):83–86PubMedGoogle Scholar
  15. 15.
    Engelhart MJ, Geerlings MI, Ruitenberg A, Van Swieten JC, Hofman A, Witteman JC, Breteler MM (2002) Diet and risk of dementia: does fat matter?: the Rotterdam Study. Neurology 59(12):1915–1921PubMedCrossRefGoogle Scholar
  16. 16.
    Soy Stats (2005) http://www.soystats.com/2005/Default-frames.htm. Accessed on 8/31/06
  17. 17.
    White LR, Petrovitch H, Ross GW et al (2000) Brain aging and midlife tofu consumption. J Am Coll Nutr 19: 242–255PubMedGoogle Scholar
  18. 18.
    File SE, Jarret N, Fluck E, Duffy R, Casey K, Wiseman H (2001) Eating soya improves human memory. Psychopharmacology (Berl) 157:430–436CrossRefGoogle Scholar
  19. 19.
    File Se, Duffy R, Wiseman H (2002) Soya improves human memory. Soy & Health. The Queen Elizabeth II Conference Center, LondonGoogle Scholar
  20. 20.
    Casini ML, Marelli G, Papaleo E, Ferrari A, D’Ambrosio F, Unfer V (2006) Psychological assessment of the effects of treatment with phytoestrogens on postmenopausal women: a randomized, double-blind, crossover, placebo-controlled study. Fertil Steril 85(4):972–978PubMedCrossRefGoogle Scholar
  21. 21.
    Kritz-Silverstein D, Von Muhlen D, Barrett-Connor E, Bressel MA (2003) Isoflavones and cognitive function in older women: the SOy and Health In Aging (SOPHIA) Study. Menopause 10(3):196–202PubMedCrossRefGoogle Scholar
  22. 22.
    File SE, Hartley DE, Elsabagh S, Duffy R, Wiseman H (2005) Cognitive improvement after 6 weeks of soy supplements in postmenopausal women is limited to frontal lobe function. Menopause 12(2):193–201PubMedCrossRefGoogle Scholar
  23. 23.
    Kreijkamp-Kaspers S, Kok L, Grobbee DE, de Haan EH, Aleman A, Lampe JW, van der Schouw YT (2004) Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women: a randomized controlled trial. JAMA 292(1):65–74PubMedCrossRefGoogle Scholar
  24. 24.
    Stein D, Sano M Anti-oxidant drugs in the treatment and prevention of Alzheimer’s disease and cognitive loss. In: Ritchie CW, Ames DJ, Masters CL, Cummings (eds) Therapeutic strategies. Dementia Atlas Medical Publishing Ltd Hertforshire, UK, 2006 (in press)Google Scholar
  25. 25.
    Stampfer MJ, Kang JH, Chen J, Cherry R, Grodstein F (2005) Effects of moderate alcohol consumption on cognitive function in women. N Engl J Med 352(3):245–253PubMedCrossRefGoogle Scholar
  26. 26.
    Leibovici D, Ritchie K, Ledesert B, Touchon J (1999) The effects of wine and tobacco consumption on cognitive performance in the elderly: a longitudinal study of relative risk. Int J Epidemiol 28(1):77–81PubMedCrossRefGoogle Scholar
  27. 27.
    Orgogozo JM, Dartigues JF, Lafont S, Letenneur L, Commenges D, Salamon R, Renaud S, Breteler MB (1997) Wine consumption and dementia in the elderly: a prospective community study in the Bordeaux area. Rev Neurol (Paris) 153(3):185–192Google Scholar
  28. 28.
    Truelsen T, Thudium D, Gronbaek M (2002) Copenhagen City Heart Study. Amount and type of alcohol and risk of dementia: the Copenhagen City Heart Study. Neurology 59(9):1313–1319PubMedGoogle Scholar
  29. 29.
    Savaskan E, Olivieri G, Meier F, Seifritz E, Wirz-Justice A, Muller-Spahn F (2003) Red wine ingredient resveratrol protects from beta-amyloid neurotoxicity. Gerontology 49(6):380–383PubMedCrossRefGoogle Scholar
  30. 30.
    Jang JH, Surh YJ (2003) Protective effect of resveratrol on beta-amyloid-induced oxidative PC12 cell death. Free Radic Biol Med 34(8):1100–1110PubMedCrossRefGoogle Scholar
  31. 31.
    Blass J, Gibson GE (2006) Correlations of disability and biologic alterations in Alzheimer brain and test of significance by a therapeutic trial in humans. J Alzheimers Dis 9(2):207–218PubMedGoogle Scholar
  32. 32.
    American Diabetes Association food pyramid. http://www.diabetes.org/nutrition-and-recipes/nutrition/foodpyramid.jsp. Accessed on 8/31/06Google Scholar
  33. 33.
    Kang JH, Ascherio A, Grodstein F (2005) Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol 57(5):713–720PubMedCrossRefGoogle Scholar
  34. 34.
    Dai Q, Borenstein AR, Wu Y, Jackson JC, Larson EB (2006) Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med 119(9):751–759PubMedCrossRefGoogle Scholar
  35. 35.
    Engelhart MJ, Geerlings MI et al (2002) Dietary intake of antioxidants and risk of Alzheimer disease. JAMA 287(24): 3223–3229PubMedCrossRefGoogle Scholar
  36. 36.
    Morris MC, Evans DA et al (2002) Dietary intake of antioxidant nutrients and the risk of incident Alzheimer disease in a biracial community study. JAMA 287(24):3230–3237PubMedCrossRefGoogle Scholar
  37. 37.
    Morris MC, Evans DA, Tangney CC, Bienias JL, Wilson RS, Aggarwal NT, Scherr PA (2005) Relation of the tocopherol forms to incident Alzheimer disease and to cognitive change. Am J Clin Nutr 81(2):508–514PubMedGoogle Scholar
  38. 38.
    Grodstein F, Chen J, Willett WC (2003) High-dose antioxidant supplements and cognitive function in community-dwelling elderly women. Am J Clin Nutr 77(4):975–984PubMedGoogle Scholar
  39. 39.
    Petersen RC, Thomas RG, Grundman M, Bennett D, Doody R, Ferris S, Galasko D, Jin S, Kaye J, Levey A, Pfeiffer E, Sano M, van Dyck CH, Thal LJ (2005) Alzheimer’s Disease Cooperative Study Group. Vitamin E and donepezil for the treatment of mild cognitive impairment. N Engl J Med 352(23):2379–2388 (Epub 2005 Apr 13)PubMedCrossRefGoogle Scholar
  40. 40.
    Thomas A, Iacono D, Bonanni L, D’Andreamatteo G, Onofrj M (2001) Donepezil, rivastigmine, and vitamin E in Alzheimer disease: a combined P300 event-related potentials/neuropsychologic evaluation over 6 months. Clin Neuropharmacol 24(1):31–42PubMedCrossRefGoogle Scholar
  41. 41.
    Onofrj M, Thomas A, Luciano AL, Iacono D, Di Rollo A, D’Andreamatteo G, Di Iorio A (2002) Donepezil versus vitamin E in Alzheimer’s disease: Part 2: mild versus moderate-severe Alzheimer’s disease. Clin Neuropharmacol 25(4):207–215PubMedCrossRefGoogle Scholar
  42. 42.
    Thal LJ, Grundman M, Berg J, Ernstrom K, Margolin R, Pfeiffer E, Weiner MF, Zamrini E, Thomas RG (2003) Idebenone treatment fails to slow cognitive decline in Alzheimer’s disease. Neurology 61(11):1498–1502PubMedGoogle Scholar
  43. 43.
    Gutzmann H, Kuhl KP, Hadler D, Rapp MA (2002) Safety and efficacy of idebenone versus tacrine in patients with Alzheimer’s disease: results of a randomized, double-blind, parallel-group multicenter study. Pharmacopsychiatry 35(1):12–18PubMedCrossRefGoogle Scholar
  44. 44.
    Thomas A, Iacono D, Bonanni L, D’Andreamatteo G, Onofrj M (2001) Donepezil, rivastigmine, and vitamin E in Alzheimer disease: a combined P300 event-related potentials/neuropsychologic evaluation over 6 months. Clin Neuropharmacol 24(1):31–42PubMedCrossRefGoogle Scholar
  45. 45.
    Miller ER 3rd, Pastor-Barriuso R, Dalal D, Riemersma RA, Appel LJ, Guallar E (2005) Meta-analysis: high-dosage vitamin E supplementation may increase all-cause mortality. Ann Intern Med 142(1):37–46 (Epub 2004 Nov 10)PubMedGoogle Scholar
  46. 46.
    Lonn E, Bosch J, Yusuf S, Sheridan P, Pogue J, Arnold JM, Ross C, Arnold A,Sleight P, Probstfield J, Dagenais GR (2005) HOPE and HOPE-TOO Trial Investigators. Effects of long-term vitamin E supplementation on cardiovascular events and cancer: a randomized controlled trial. JAMA 293(11):1338–1347PubMedCrossRefGoogle Scholar
  47. 47.
    Wannamethee SG, Lowe GD, Rumley A, Bruckdorfer KR, Whincup PH (2006) Associations of vitamin C status, fruit and vegetable intakes, and markers of inflammation and hemostasis. Am J Clin Nutr 83(3):567–574 (quiz 726–727)PubMedGoogle Scholar
  48. 48.
    de Craen AJ, Gussekloo J, Vrijsen B, Westendorp RG (2005) Meta-analysis of nonsteroidal antiinflammatory drug use and risk of dementia. Am J Epidemiol 161(2):114–120PubMedCrossRefGoogle Scholar
  49. 49.
    Durga J, van Boxtel MP, Schouten EG, Bots ML, Kok FJ, Verhoef P (2006) Folate and the methylenetetrahydrofolate reductase 677C→T mutation correlate with cognitive performance. Neurobiol Aging 27(2):334–343 (Epub 2005 Feb 24)PubMedCrossRefGoogle Scholar
  50. 50.
    Ramos MI, Allen LH, Mungas DM, Jagust WJ, Haan MN, Green R, Miller JW (2005) Low folate status is associated with impaired cognitive function and dementia in the Sacramento Area Latino Study on Aging. Am J Clin Nutr 82(6):1346–1352PubMedGoogle Scholar
  51. 51.
    Mooijaart SP, Gussekloo J, Frolich M, Jolles J, Stott DJ, Westendorp RG, de Craen AJ (2005) Homocysteine, vitamin B-12, and folic acid and the risk of cognitive decline in old age: the Leiden 85-Plus study. Am J Clin Nutr 82(4):866–871PubMedGoogle Scholar
  52. 52.
    Quadri P, Fragiacomo C, Pezzati R, Zanda E, Tettamanti M, Lucca U (2005) Homocysteine and B vitamins in mild cognitive impairment and dementia. Clin Chem Lab Med 43(10):1096–1100PubMedCrossRefGoogle Scholar
  53. 53.
    Tucker KL, Qiao N, Scott T, Rosenberg I, Spiro A 3rd (2005) High homocysteine and low B vitamins predict cognitive decline in aging men: the Veterans Affairs Normative Aging Study. Am J Clin Nutr. 82(3):627–635PubMedGoogle Scholar
  54. 54.
    Bryan J, Calvaresi E (2004) Associations between dietary intake of folate and vitamins B-12 and B-6 and self-reported cognitive function and psychological well-being in Australian men and women in midlife. J Nutr Health Aging 8(4):226–232PubMedGoogle Scholar
  55. 55.
    Morris MC, Evans DA, Bienias JL, Scherr PA, Tangney CC, Hebert LE, Bennett DA, Wilson RS, Aggarwal N (2004) Dietary niacin and the risk of incident Alzheimer’s disease and of cognitive decline. J Neurol Neurosurg Psychiatry 75(8):1093–1099PubMedCrossRefGoogle Scholar
  56. 56.
    Quadri P, Fragiacomo C, Pezzati R, Zanda E, Forloni G, Tettamanti M, Lucca U (2004) Homocysteine, folate, and vitamin B-12 in mild cognitive impairment, Alzheimer disease, and vascular dementia. Am J Clin Nutr 80(1):114–122PubMedGoogle Scholar
  57. 57.
    Whyte EM, Mulsant BH, Butters MA, Qayyum M, Towers A, Sweet RA, Klunk W, Wisniewski S, DeKosky ST (2002) Cognitive and behavioral correlates of low vitamin B12 levels in elderly patients with progressive dementia. Am J Geriatr Psychiatry 10(3):321–327PubMedCrossRefGoogle Scholar
  58. 58.
    Duthie SJ, Whalley LJ, Collins AR, Leaper S, Berger K, Deary IJ (2002) Homocysteine, B vitamin status, and cognitive function in the elderly. Am J Clin Nutr 75(5):908–913PubMedGoogle Scholar
  59. 59.
    Robins Wahlin TB, Wahlin A, Winblad B, Backman L (2001) The influence of serum vitamin B12 and folate status on cognitive functioning in very old age. Biol Psychol 56(3):247–265PubMedCrossRefGoogle Scholar
  60. 60.
    Wang HX, Wahlin A, Basun H, Fastbom J, Winblad B, Fratiglioni L (2001) Vitamin B(12) and folate in relation to the development of Alzheimer’s disease. Neurology 56(9):1188–1194PubMedGoogle Scholar
  61. 61.
    Ravaglia G, Forti P, Maioli F, Vettori C, Grossi G, Bargossi AM, Caldarera M, Franceschi C, Facchini A, Mariani E, Cavalli G (2000) Elevated plasma homocysteine levels in centenarians are not associated with cognitive impairment. Mech Ageing Dev 121(1–3):251–261PubMedGoogle Scholar
  62. 62.
    Meins W, Muller-Thomsen T, Meier-Baumgartner HP (2000) Subnormal serum vitamin B12 and behavioural and psychological symptoms in Alzheimer’s disease. Int J Geriatr Psychiatry 15(5):415–418PubMedCrossRefGoogle Scholar
  63. 63.
    Lindeman RD, Romero LJ, Koehler KM, Liang HC, LaRue A, Baumgartner RN, Garry PJ (2000) Serum vitamin B12, C and folate concentrations in the New Mexico elder health survey: correlations with cognitive and affective functions. J Am Coll Nutr 19(1):68–76PubMedGoogle Scholar
  64. 64.
    Morris MC, Evans DA, Schneider JA, Tangney CC, Bienias JL, Aggarwal NT (2006) Dietary folate and vitamins B-12 and B-6 not associated with incident Alzheimer’s disease. J Alzheimers Dis 9(4):435–443PubMedGoogle Scholar
  65. 65.
    Bryan J, Calvaresi E, Hughes D (2002) Short-term folate, vitamin B-12 or vitamin B-6 supplementation slightly affects memory performance but not mood in women of various ages. J Nutr 132(6):1345–1356PubMedGoogle Scholar
  66. 66.
    Wolters M, Hickstein M, Flintermann A, Tewes U, Hahn A (2005) Cognitive performance in relation to vitamin status in healthy elderly German women-the effect of 6-month multivitamin supplementation. Prev Med 41(1):253–259PubMedCrossRefGoogle Scholar
  67. 67.
    Salas-Salvado J, Torres M, Planas M, Altimir S, Pagan C, Gonzalez ME, Johnston S, Puiggros C, Bonada A, Garcia-Lorda P (2005) Effect of oral administration of a whole formula diet on nutritional and cognitive status in patients with Alzheimer’s disease. Clin Nutr 24(3):390–397PubMedCrossRefGoogle Scholar
  68. 68.
    Wouters-Wesseling W, Wagenaar LW, Rozendaal M, Deijen JB, de Groot LC, Bindels JG, van Staveren WA (2005) Effect of an enriched drink on cognitive function in frail elderly persons. J Gerontol A Biol Sci Med Sci 60(2):265–270PubMedGoogle Scholar
  69. 69.
    Bergmann C, Sano M (2006) Cardiac risk factors and potential treatments in Alzheimer’s disease. Neurol Res 28(6):595–604PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of PsychiatryMount Sinai School of MedicineNew YorkUSA
  2. 2.James J Peters VAMCBronxUSA

Personalised recommendations