Neurochemical Research

, Volume 32, Issue 4–5, pp 857–869

Testing for Linkage and Association Across the Dihydrolipoyl Dehydrogenase Gene Region with Alzheimer’s Disease in Three Sample Populations

  • Abraham M. Brown
  • Derek Gordon
  • Hsinhwa Lee
  • Fabienne Wavrant-De Vrièze
  • Elena Cellini
  • Silvia Bagnoli
  • Benedetta Nacmias
  • Sandro Sorbi
  • John Hardy
  • John P. Blass
Original Paper

Abstract

Prior case–control studies from our laboratory of a population enriched with individuals of Ashkenazi Jewish descent suggested that association exists between Alzheimer’s disease (AD) and the chromosomal region near the DLD gene, which encodes the mitochondrial dihydrolipoamide dehydrogenase enzyme. In support of this finding, we found that linkage analysis restricted to autopsy-proven patients in the National Institute of Mental Health–National Cell Repository for Alzheimer’s Disease (NIMH–NCRAD) Genetics Initiative pedigree data resulted in point-wise significant evidence for linkage (minimum p-value = 0.024) for a marker position close to the DLD locus. We now report case–control replication studies in two independent Caucasian series from the US and Italy, as well as a linkage analysis from the NIMH–NCRAD Genetics Initiative Database. Pair-wise analysis of the SNPs in the case–control series indicated there was strong linkage disequilibrium across the DLD locus in these populations, as previously reported. These findings suggest that testing for association of complex diseases with DLD locus should have considerable statistical power. Analysis of multi-locus genotypes or haplotypes based upon three SNP loci combined with results from our previous report provided trends toward significant evidence of association of DLD with AD, although neither of the present studies’ association showed significance at the 0.05 level. Combining linkage and association findings for all AD patients (males and females) results in a p-value that is more significant than any of the individual findings’ p-values. Finally, minimum sample size calculations using parameters from the DLD locus suggest that sample sizes on the order of 1,000 total cases and controls are needed to detect association for a wide range of genetic model parameters.

Keywords

Energy metabolism Mitochondria Gene Alzheimer’s disease Polymorphism M-test Heterogeneity Diagnostic error Diagnosis Misclassification 

References

  1. 1.
    Gibson GE, Sheu KF, Blass JP, Baker A, Carlson KC, Harding B, Perrino P (1988) Reduced activities of thiamine dependent enzymes in brains and peripheral tissues of Alzheimer’s patients. Arch Neurol 45:836–840PubMedGoogle Scholar
  2. 2.
    Gibson GE, Sheu KF, Blass JP (1998) Abnormalities of mitochondrial enzymes in Alzheimer disease. J Neural Transm 105:855–870PubMedCrossRefGoogle Scholar
  3. 3.
    Mastrogiacoma F, Lindsay JG, Bettendorff L, Rice J, Kish SJ (1996) Brain protein and alpha-ketoglutarate dehydrogenase complex activity in Alzheimer’s disease. Ann Neurol 39:592–598PubMedCrossRefGoogle Scholar
  4. 4.
    Sorbi S, Bird ED, Blass JP (1983) Decreased pyruvate dehydrogenase complex activity in Huntington and Alzheimer brain. Ann Neurol 13:72–78PubMedCrossRefGoogle Scholar
  5. 5.
    Yates CM, Butterworth J, Tennant MC, Gordon A (1990) Enzyme activities in relation to pH and lactate in postmortem brain in Alzheimer-type and other dementias. J Neurochem 55:1624–1630PubMedCrossRefGoogle Scholar
  6. 6.
    Brown AM, Gordon D, Lee H, Xu Y, Caudy M, Hardy J, Haroutunian V, Blass JP (2004) Association of the dihydrolipoamide dehydrogenase gene with Alzheimer’s disease in an Ashkenazi Jewish population. Am J Med Genet 131B:60–66CrossRefGoogle Scholar
  7. 7.
    Pericak-Vance MA, Grubber J, Bailey LR, Hedges D, West S, Santoro L, Kemmerer B, Hall JL, Saunders AM, Roses AD, Small GW, Scott WK, Conneally PM, Vance JM, Haines JL (2000) Identification of novel genes in late-onset Alzheimer’s disease. Exp Gerontol 35:1343–1352PubMedCrossRefGoogle Scholar
  8. 8.
    Liu TC, Kim H, Arizmendi C, Kitano A, Patel MS (1993) Identification of two missense mutations in a dihydrolipoamide dehydrogenase-deficient patient. Proc Natl Acad Sci USA 90:5186–5190PubMedCrossRefGoogle Scholar
  9. 9.
    Hong YS, Kerr DS, Craigen WJ, Tan J, Pan Y, Lusk M, Patel MS (1996) Identification of two mutations in a compound heterozygous child with dihydrolipoamide dehydrogenase deficiency. Hum Mol Genet 5:1925–1930PubMedCrossRefGoogle Scholar
  10. 10.
    Hong YS, Kerr DS, Liu TC, Lusk M, Powell BR, Patel MS (1997) Deficiency of dihydrolipoamide dehydrogenase due to two mutant alleles (E340K and G101del). Analysis of a family and prenatal testing. Biochim Biophys Acta 1362:160–168PubMedGoogle Scholar
  11. 11.
    Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, Wiener H, Perry RT, Collins JS, Harrell LE, Go RC, Mahoney A, Beaty T, Fallin MD, Avramopoulos D, Chase GA, Folstein MF, McInnis MG, Bassett SS, Doheny KJ, Pugh EW, Tanzi RE (2003) Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum Mol Genet 12:23–32PubMedCrossRefGoogle Scholar
  12. 12.
    Kruglyak L, Daly MJ, Reeve-Daly MP, Lander ES (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347–1363PubMedGoogle Scholar
  13. 13.
    Kong A, Cox NJ (1997) Allele-sharing models: LOD scores and accurate linkage tests. Am J Hum Genet 61:1179–1188PubMedCrossRefGoogle Scholar
  14. 14.
    Gordon D, Haynes C, Finch SJ, Brown AM (2006) Increase in linkage information by stratification of pedigree data into gold-standard and standard diagnoses: application to the NIMH Alzheimer Disease Genetics Initiative Dataset. Hum Hered 61:97–103PubMedCrossRefGoogle Scholar
  15. 15.
    Morton NE (1956) The detection and estimation of linkage between the genes for elliptocytosis and the Rh blood type. Am J Hum Genet 8:80–96PubMedGoogle Scholar
  16. 16.
    Blacker D, Albert MS, Bassett SS, Go RC, Harrell LE, Folstein MF (1994) Reliability and validity of NINCDS-ADRDA criteria for Alzheimer’s disease. The National Institute of Mental Health Genetics Initiative. Arch Neurol 51:1198–1204PubMedGoogle Scholar
  17. 17.
    Blacker D, Haines JL, Rodes L, Terwedow H, Go RC, Harrell LE, Perry RT, Bassett SS, Chase G, Meyers D, Albert MS, Tanzi R (1997) ApoE-4 and age at onset of Alzheimer’s disease: the NIMH genetics initiative. Neurology 48:139–147PubMedGoogle Scholar
  18. 18.
    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM (1984) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34:939–944PubMedGoogle Scholar
  19. 19.
    Nacmias B, Bagnoli S, Tedde A, Cellini E, Guarnieri BM, Bartoli A, Serio A, Piacentini S, Sorbi S (2006) Cystatin C and apoe polymorphisms in Italian Alzheimer’s disease. Neurosci Lett 392:110–113PubMedCrossRefGoogle Scholar
  20. 20.
    American Psychiatric Association (1994) Diagnostic and statistical manual of mental disorders. American Psychiatric Association, WashingtonGoogle Scholar
  21. 21.
    The Dementia Study Group of the Italian Neurological Society (2000) Guidelines for the diagnosis of dementia and Alzheimer’s disease. The Dementia Study Group of the Italian Neurological Society. Neurol Sci 21:187–194Google Scholar
  22. 22.
    Hosking L, Lumsden S, Lewis K, Yeo A, McCarthy L, Bansal A, Riley J, Purvis I, Xu CF (2004) Detection of genotyping errors by Hardy–Weinberg equilibrium testing. Eur J Hum Genet 12:395–399PubMedCrossRefGoogle Scholar
  23. 23.
    Kang SJ, Gordon D, Finch SJ (2004) What SNP genotyping errors are most costly for genetic association studies?. Genet Epidemiol 26:132–141PubMedCrossRefGoogle Scholar
  24. 24.
    Leal SM (2005) Detection of genotyping errors and pseudo-SNPs via deviations from Hardy–Weinberg equilibrium. Genet Epidemiol 29:204–214PubMedCrossRefGoogle Scholar
  25. 25.
    Cox DG, Kraft P (2006) Quantification of the power of Hardy–Weinberg equilibrium testing to detect genotyping error. Hum Hered 61:10–14PubMedCrossRefGoogle Scholar
  26. 26.
    Lewontin RC (1964) The interaction of selection and linkage. I. General considerations; heterotic models. Genetics 49:49–67PubMedGoogle Scholar
  27. 27.
    Abecasis GR, Cookson WO (2000) GOLD—graphical overview of linkage disequilibrium. Bioinformatics 16:182–183PubMedCrossRefGoogle Scholar
  28. 28.
    Smith CAB (1963) Testing for heterogeneity of recombination fraction values in human genetics. Ann Hum Genet 27:175–182PubMedGoogle Scholar
  29. 29.
    Ott J (1999) Analysis of human genetic linkage. Johns Hopkins, BaltimoreGoogle Scholar
  30. 30.
    Schaid DJ (1999) Case-parents design for gene-environment interaction. Genet Epidemiol 16:261–273PubMedCrossRefGoogle Scholar
  31. 31.
    Single RM, Meyer D, Hollenbach JA, Nelson MP, Noble JA, Erlich HA, Thomson G (2002) Haplotype frequency estimation in patient populations: the effect of departures from Hardy–Weinberg proportions and collapsing over a locus in the HLA region. Genet Epidemiol 22:186–195PubMedCrossRefGoogle Scholar
  32. 32.
    Agresti A (2002) Categorical data analysis. In: Wiley series in probability and statistics. Wiley, Hoboken, 710 ppGoogle Scholar
  33. 33.
    Fisher RA (1960) The design of experiments. Oliver and Boyd, EdinburghGoogle Scholar
  34. 34.
    Freeman GH, Halton JH (1951) Note on an exact treatment of contingency, goodness of fit and other problems of significance. Biometrika 38:141–149PubMedGoogle Scholar
  35. 35.
    Fisher RA (1970) Statistical methods for research workers. Hafner/MacMillan, New YorkGoogle Scholar
  36. 36.
    Westfall PH, Young SS (1993) Resampling-based multiple testing. Wiley, New YorkGoogle Scholar
  37. 37.
    Hill WG, Weir BS (1994) Maximum-likelihood estimation of gene location by linkage disequilibrium. Am J Hum Genet 54:705–714PubMedGoogle Scholar
  38. 38.
    Purcell S, Cherny SS, Sham PC (2003) Genetic power calculator: design of linkage and association genetic mapping studies of complex traits. Bioinformatics 19:149–150PubMedCrossRefGoogle Scholar
  39. 39.
    Gordon D, Finch SJ, Nothnagel M, Ott J (2002) Power and sample size calculations for case–control genetic association tests when errors are present: application to single nucleotide polymorphisms. Hum Hered 54:22–33PubMedCrossRefGoogle Scholar
  40. 40.
    Gordon D, Haynes C, Blumenfeld J, Finch SJ (2005) PAWE-3D: visualizing power for association with error in case–control genetic studies of complex traits. Bioinformatics 21:3935–3937PubMedCrossRefGoogle Scholar
  41. 41.
    Gordon D, Simonic I, Ott J (2000) Significant evidence for linkage disequilibrium over a 5-cM region among Afrikaners. Genomics 66:87–92PubMedCrossRefGoogle Scholar
  42. 42.
    Pandit B, Ahn GS, Hazard SE, Gordon D, Patel SB (2006) A detailed HapMap of the Sitosterolemia locus spanning 69 kb; differences between Caucasians and African-Americans. BMC Med Genet 7:13PubMedCrossRefGoogle Scholar
  43. 43.
    Schaid DJ, Sommer SS (1993) Genotype relative risks: methods for design and analysis of candidate-gene association studies. Am J Hum Genet 53:1114–1126PubMedGoogle Scholar
  44. 44.
    Zondervan KT, Cardon LR (2004) The complex interplay among factors that influence allelic association. Nat Rev Genet 5:89–100PubMedCrossRefGoogle Scholar
  45. 45.
    Pfeiffer RM, Gail MH (2003) Sample size calculations for population- and family-based case–control association studies on marker genotypes. Genet Epidemiol 25:136–148PubMedCrossRefGoogle Scholar
  46. 46.
    Tu IP, Whittemore AS (1999) Power of association and linkage tests when the disease alleles are unobserved. Am J Hum Genet 64:641–649PubMedCrossRefGoogle Scholar
  47. 47.
    Abel L, Muller-Myhsok B (1998) Maximum-likelihood expression of the transmission/disequilibrium test and power considerations. Am J Hum Genet 63:664–667PubMedCrossRefGoogle Scholar
  48. 48.
    De La Vega FM, Gordon D, Su X, Scafe C, Isaac H, Gilbert DA, Spier EG (2005) Power and sample size calculations for genetic case/control studies using gene-centric SNP maps: application to human chromosomes 6, 21, and 22 in three populations. Hum Hered 60:43–60PubMedCrossRefGoogle Scholar
  49. 49.
    Ji F, Yang Y, Haynes C, Finch SJ, Gordon D (2005) Computing asymptotic power and sample size for case–control genetic association studies in the presence of phenotype and/or genotype misclassification errors. Stat Appl Genet Mol Biol 4:Article 37Google Scholar
  50. 50.
    Gordon D, Finch SJ (2005) Factors affecting statistical power in the detection of genetic association. J Clin Invest 115:1408–1418PubMedCrossRefGoogle Scholar
  51. 51.
    Sasieni PD (1997) From genotypes to genes: doubling the sample size. Biometrics 53:1253–1261PubMedCrossRefGoogle Scholar
  52. 52.
    Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923PubMedCrossRefGoogle Scholar
  53. 53.
    Consortium IH (2005) A haplotype map of the human genome. Nature 437:1299–1320CrossRefGoogle Scholar
  54. 54.
    Mayeux R, Saunders AM, Shea S, Mirra S, Evans D, Roses AD, Hyman BT, Crain B, Tang MX, Phelps CH (1998) Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. Alzheimer’s Disease Centers Consortium on Apolipoprotein E and Alzheimer’s Disease. N Engl J Med 338:506–511PubMedCrossRefGoogle Scholar
  55. 55.
    Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES (2001) High-resolution haplotype structure in the human genome. Nat Genet 29:229–232PubMedCrossRefGoogle Scholar
  56. 56.
    The International HapMap Consortium (2003) The International HapMap Project. Nature 426:789–796CrossRefGoogle Scholar
  57. 57.
    Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci USA 90:1977–1981PubMedCrossRefGoogle Scholar
  58. 58.
    Wise LH, Lanchbury JS, Lewis CM (1999) Meta-analysis of genome searches. Ann Hum Genet 63:263–272PubMedCrossRefGoogle Scholar
  59. 59.
    Wise LH, Lewis CM (1999) A method for meta-analysis of genome searches: application to simulated data. Genet Epidemiol 17(Suppl 1):S767–S771PubMedGoogle Scholar
  60. 60.
    Pritchard JK (2001) Are rare variants responsible for susceptibility to complex diseases?. Am J Hum Genet 69:124–137PubMedCrossRefGoogle Scholar
  61. 61.
    International HapMap Consortium (2005) A haplotype map of the human genome. Nature 437:1299–1320CrossRefGoogle Scholar
  62. 62.
    Thorisson GA, Smith AV, Krishnan L, Stein LD (2005) The International HapMap Project Web site. Genome Res 15:1592–1593PubMedCrossRefGoogle Scholar
  63. 63.
    Pritchard JK, Przeworski M (2001) Linkage disequilibrium in humans: models and data. Am J Hum Genet 69:1–14PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Abraham M. Brown
    • 1
    • 2
  • Derek Gordon
    • 3
  • Hsinhwa Lee
    • 1
  • Fabienne Wavrant-De Vrièze
    • 4
  • Elena Cellini
    • 5
  • Silvia Bagnoli
    • 5
  • Benedetta Nacmias
    • 5
  • Sandro Sorbi
    • 5
  • John Hardy
    • 4
  • John P. Blass
    • 1
    • 6
    • 7
  1. 1.Burke Medical Research Institute, 785 Mamaroneck AvenueWhite PlainsUSA
  2. 2.Department of BiochemistryWeill Medical College of Cornell UniversityNew YorkUSA
  3. 3.Department of GeneticsRutgers UniversityPiscatawayUSA
  4. 4.Laboratory of NeurogeneticsNational Institute of Neurological Diseases and StrokeBethesdaUSA
  5. 5.Department of Neurological and Psychiatric Sciences, Viale Morgagni 85FlorenceItaly
  6. 6.Department of Neurology and NeuroscienceWeill Medical College of Cornell UniversityNew YorkUSA
  7. 7.Department of MedicineWeill Medical College of Cornell UniversityNew YorkUSA

Personalised recommendations