Neurochemical Research

, Volume 32, Issue 2, pp 159–165

T2-weighted μMRI and Evoked Potential of the Visual System Measurements During the Development of Hypomyelinated Transgenic Mice

  • Melanie Martin
  • Samuel D. Reyes
  • Timothy D. Hiltner
  • M. Irene Givogri
  • J. Michael Tyszka
  • Robin Fisher
  • Anthony T. Campagnoni
  • Scott E. Fraser
  • Russell E. Jacobs
  • Carol Readhead
ORIGINAL PAPER

Abstract

Our objective was to follow the course of a dysmyelinating disease followed by partial recovery in transgenic mice using non-invasive high-resolution (117 × 117 × 70 μm) magnetic resonance (μMRI) and evoked potential of the visual system (VEP) techniques. We used JOE (for J37 golli overexpressing) transgenic mice engineered to overexpress golli J37, a product of the Golli–mbp gene complex, specifically in oligodendrocytes. Individual JOE transgenics and their unaffected siblings were followed from 21 until 75-days-old using non-invasive in vivo VEPs and 3D T2-weighted μMRI on an 11.7 T scanner, performing what we believe is the first longitudinal study of its kind. The μMRI data indicated clear, global hypomyelination during the period of peak myelination (21–42 days), which was partially corrected at later ages (>60 days) in the JOE mice compared to controls. These μMRI data correlated well with [Campagnoni AT (1995) “Molecular biology of myelination”. In: Ransom B, Kettenmann H (eds) Neuroglia—a Treatise. Oxford University Press, London, pp 555–570] myelin staining, [Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41–89] a transient intention tremor during the peak period of myelination, which abated at later ages, and [Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197–224] VEPs which all indicated a significant delay of CNS myelin development and persistent hypomyelination in JOE mice. Overall these non-invasive techniques are capable of spatially resolving the increase in myelination in the normally developing and developmentally delayed mouse brain.

Keywords

Golli products Myelin basic protein J37 Magnetic resonance imaging VEP Myelination Dysmyelination Myelin Golli–mbp 

References

  1. 1.
    Campagnoni AT (1995) Molecular biology of myelination. In: Ransom B, Kettenmann H (eds) Neuroglia—a treatise. Oxford University Press, London pp 555–570Google Scholar
  2. 2.
    Campagnoni AT, Macklin WB (1988) Cellular and molecular aspects of myelin protein gene-expression. Mol Neurobiol 2:41–89PubMedCrossRefGoogle Scholar
  3. 3.
    Lees MB, Brostoff SW (1984) Proteins in myelin. In: Morell (ed) Myelin. Plenum Press, New York and London, pp 197–224Google Scholar
  4. 4.
    deFerra F, Engh H, Hudson L et al (1985) Alternative splicing accounts for the four forms of myelin basic protein. Cell 43:721–727CrossRefGoogle Scholar
  5. 5.
    Roach A, Boylan K, Horvath S et al (1983) Characterization of cloned cDNA representing rat myelin basic protein: absence of expression in brain of shiverer mutant mice. Cell 34:799–806PubMedCrossRefGoogle Scholar
  6. 6.
    Takahashi N, Roach A, Teplow DB et al (1985) Cloning and characterization of the myelin basic protein gene from mouse: one gene can encode both 14 kd and 18.5 kd MBPs by the alternate use of exons. Cell 42:139–148PubMedCrossRefGoogle Scholar
  7. 7.
    Campagnoni AT, Pribyl TM, Campagnoni CW et al (1993) Structure and developmental regulation of Golli–Mbp, a 105-kilobase gene that encompasses the myelin basic-protein gene and is expressed in cells in the oligodenrocyte lineage in the brain. J Biol Chem 268: 4930–4938Google Scholar
  8. 8.
    Campagnoni AT, Skoff RP (2001) The pathobiology of myelin mutants reveals novel biological function of the MBP and PLP genes. Brain Pathol 11:74–91PubMedCrossRefGoogle Scholar
  9. 9.
    Reyes SD, Givogri MI, Campagnoni C et al (2003) Overexpression of the golli J37 isoform in transgenic mice results in CNS hypomyelination. Abstr-Soc. Neurosci 141.17Google Scholar
  10. 10.
    Jacobs EC (2005) Genetic alterations in the mouse myelin basic proteins result in a range of dysmyelinating disorders. J Neurol Sci 228:195–197PubMedCrossRefGoogle Scholar
  11. 11.
    Martin M, Hiltner T, Wood J, Fraser S, Jacobs R, Readhead C (2006) Myelin deficiencies visualized in vivo: visually evoked potentials and T2-weighted MR images of Shiverer mutant and wild type mice. Accepted in J Neurosci ResGoogle Scholar
  12. 12.
    Strain GM, Tedford BL (1993) Flash and pattern-reversal visual-evoked potentials in C57BL/6J and B6CBAF1/J mice. Brain Res Bull 32:57–63PubMedCrossRefGoogle Scholar
  13. 13.
    Norris DG (1991) Magn Reson Med 17:539–542PubMedGoogle Scholar
  14. 14.
    Hume AL, Waxman SG (1988) Evoked potentials in suspected multiple sclerosis—diagnostic-value and prediction of clinical course. J Neurol Sci 83:191–210PubMedCrossRefGoogle Scholar
  15. 15.
    Matthews WB (1985) Clinical aspects. In: Matthews WB et al (eds) McAlpines’s multiple sclerosis. 49 Churchhill Livingstone, EdinburghGoogle Scholar
  16. 16.
    Chiappa KH (1983) Evoked potentials in clinical medicine. Raven Press, New YorkGoogle Scholar
  17. 17.
    Halliday AM, McDonald WI, Mushin J (1973) Visual evoked-response in diagnosis of multiple-sclerosis. Brit Med J 4:661–664PubMedCrossRefGoogle Scholar
  18. 18.
    Kaur J, Libich DS, Campagnoni CW et al (2003) Expression and properties of the recombinant murine Golli–Myelin basic protein isoform J37. J Neurosci Res 71:777–784PubMedCrossRefGoogle Scholar
  19. 19.
    Dupouey P, Jacque C, Bourre JM et al (1979) Immunocytochemical studies of myelin basic protein in shiverer mouse devoid of major dense line of myelin. Neurosci Lett 12:113–118PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Melanie Martin
    • 1
    • 2
  • Samuel D. Reyes
    • 3
  • Timothy D. Hiltner
    • 2
  • M. Irene Givogri
    • 3
  • J. Michael Tyszka
    • 2
  • Robin Fisher
    • 3
  • Anthony T. Campagnoni
    • 3
  • Scott E. Fraser
    • 2
  • Russell E. Jacobs
    • 2
  • Carol Readhead
    • 2
  1. 1.Department of PhysicsUniversity of WinnipegWinnipegCanada
  2. 2.Division of BiologyCaltech Brain Imaging Center and Biological Imaging CenterPasadenaUSA
  3. 3.Semel Institute for Neuroscience, UCLA Medical SchoolLos AngelesUSA

Personalised recommendations