Advertisement

Neurochemical Research

, Volume 31, Issue 7, pp 957–965 | Cite as

Ionized Calcium-binding Adapter Molecule 1 Immunoreactive Cells Change in the Gerbil Hippocampal CA1 Region after Ischemia/Reperfusion

  • In Koo Hwang
  • Ki-Yeon Yoo
  • Dae Won Kim
  • Soo Young Choi
  • Tae-Cheon Kang
  • Yong-Sun Kim
  • Moo Ho WonEmail author
ORIGINAL PAPER

Abstract

Ionized calcium-binding adapter molecule 1 (iba-1) is specifically expressed in microglia and plays an important role in the regulation of the function of microglia. We observed chronological changes of iba-1-immunoreactive cells and iba-1 level in the gerbil hippocampal CA1 region after transient ischemia. Transient forebrain ischemia in gerbils was induced by the occlusion of bilateral common carotid arteries for 5 min. Immunohistochemical and Western blot analysis of iba-1 were performed in the gerbil ischemic hippocampus. In the sham-operated group, iba-1-immunoreactive cells were detected in the CA1 region. Thirty minutes after ischemia/reperfusion, iba-1 immunoreactivity significantly increased, and its immunoreactive cells were well ramified. Three hours after ischemia/reperfusion, iba-1 immunoreactivity and level decreased, and thereafter they increased again with time after ischemia/reperfusion. Three days after ischemia/reperfusion, iba-1-immunoreactive cells had well-ramified processes, which projected to the stratum pyramidale of the CA1 region. Seven days after ischemia/reperfusion, iba-1 immunoreactivity and level were highest in the CA1 region, whereas they significantly decreased in the CA1 region 10 days after ischemia/reperfusion. Iba-1-immunoreactive cells in the ischemic CA1 region were co-localized with OX-42, a microglia marker. In brief, iba-1-immunoreactive cells change morphologically and iba-1 immunoreactivity alters in the CA1 region with time after ischemia/reperfusion. These may be associated with the delayed neuronal death of CA1 pyramidal cells in the gerbil ischemic hippocampus.

Keywords

Hippocampal CA1 region Ischemic damage Microglia Gliosis Iba-1 

Notes

Acknowledgments

The authors would like to thank Mr. Seok Han, Mr. Seung Uk Lee and Ms. Hyun Sook Kim for technical help in this study. This work was supported by the MRC program of MOST/KOSEF (R13-2005-022-01002-0).

References

  1. 1.
    Kirino T, Sano K (1984) Selective vulnerability in the gerbil hippocampus following transient ischemia. Acta Neuropathol (Berl) 62:201–208CrossRefGoogle Scholar
  2. 2.
    Kondo Y, Kondo F, Asanuma M, Tanaka K, Ogawa N (2000) Protective effect of oren-gedoku-to against induction of neuronal death by transient cerebral ischemia in the C57BL/6 mouse. Neurochem Res 25:205–209PubMedCrossRefGoogle Scholar
  3. 3.
    Candelario-Jalil E, Mhadu NH, Al-Dalain SM, Martinez G, Leon OS (2001) Time course of oxidative damage in different brain regions following transient cerebral ischemia in gerbils. Neurosci Res 41:233–241PubMedCrossRefGoogle Scholar
  4. 4.
    Kirino T (1982) Delayed neuronal death in the gerbil hippocampus following ischemia. Brain Res 239:57–69PubMedCrossRefGoogle Scholar
  5. 5.
    Hwang IK, Yoo KY, Kim DS, et al (2004) Expression and changes of galanin in neurons and microglia in the hippocampus after transient forebrain ischemia in gerbils. Brain Res 1023:193–199PubMedCrossRefGoogle Scholar
  6. 6.
    Hwang IK, Eum WS, Yoo KY, et al (2005) Copper chaperone for Cu, Zn-SOD supplement potentiates the Cu, Zn-SOD function of neuroprotective effects against ischemic neuronal damage in the gerbil hippocampus. Free Radic Biol Med 39:392–402PubMedCrossRefGoogle Scholar
  7. 7.
    Abraham H, Losonczy A, Czeh G, Lazar G (2001) Rapid activation of microglial cells by hypoxia, kainic acid, and potassium ions in slice preparations of the rat hippocampus. Brain Res 906:115–126PubMedCrossRefGoogle Scholar
  8. 8.
    Kostulas N, Li HL, Xiao BG, Huang YM, Kostulas V, Link H (2002). Dendritic cells are present in ischemic brain after permanent middle cerebral artery occlusion in the rat. Stroke 33:1129–1134PubMedCrossRefGoogle Scholar
  9. 9.
    Morino T, Ogata T, Horiuchi H, et al (2003) Delayed neuronal damage related to microglia proliferation after mild spinal cord compression injury. Neurosci Res 46:309–318PubMedCrossRefGoogle Scholar
  10. 10.
    Hermann DM, Kilic E, Kugler S, Isenmann S, Bahr M (2001) Adenovirus-mediated glial cell line-derived neurotrophic factor (GDNF) expression protects against subsequent cortical cold injury in rats. Neurobiol Dis 8:964–973PubMedCrossRefGoogle Scholar
  11. 11.
    Laurenzi MA, Arcuri C, Rossi R, Marconi P, Bocchini V (2001) Effects of microenvironment on morphology and function of the microglial cellline BV-2. Neurochem Res 26:1209–1216PubMedCrossRefGoogle Scholar
  12. 12.
    Hashimoto M, Nitta A, Fukumitsu H, Nomoto H, Shen L, Furukawa S (2005) Involvement of glial cell line-derived neurotrophic factor in activation processes of rodent macrophages. J Neurosci Res 79:476–487PubMedCrossRefGoogle Scholar
  13. 13.
    Lu YZ, Lin CH, Cheng FC, Hsueh CM (2005) Molecular mechanisms responsible for microglia-derived protection of Sprague–Dawley rat brain cells during in vitro ischemia. Neurosci Lett 373:159–164PubMedCrossRefGoogle Scholar
  14. 14.
    Meda L, Cassatella MA, Szendrei GI, et al (1995) Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 374:647–650PubMedCrossRefGoogle Scholar
  15. 15.
    Brown DR, Schmidt B, Kretzschmar HA (1996) Role of microglia and host prion protein in neurotoxicity of a prion protein fragment. Nature 380:345–347PubMedCrossRefGoogle Scholar
  16. 16.
    Barger SW, Harmon AD (1997) Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature 388:878–881PubMedCrossRefGoogle Scholar
  17. 17.
    McDonald DR, Brunden KR, Landreth GE (1997) Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 17:2284–2294PubMedGoogle Scholar
  18. 18.
    Kato H, Tanaka S, Oikawa T, Koike T, Takahashi A, Itoyama Y (2000) Expression of microglial response factor-1 in microglia and macrophages following cerebral ischemia in the rat. Brain Res 882:206–211PubMedCrossRefGoogle Scholar
  19. 19.
    Postler E, Rimner A, Beschorner R, Schluesener HJ, Meyermann R (2000) Allograft-inflammatory-factor-1 is upregulated in microglial cells in human cerebral infarctions. J Neuroimmunol 104:85–91PubMedCrossRefGoogle Scholar
  20. 20.
    Imai Y, Ibata I, Ito D, Ohsawa K, Kohsaka S (1996) A novel gene iba1 in the major histocompatibility complex class III region encoding an EF hand protein expressed in a monocytic lineage. Biochem Biophys Res Commun 224:855–862PubMedCrossRefGoogle Scholar
  21. 21.
    Ito D, Imai Y, Ohsawa K, Nakajima K, Fukuuchi Y, Kohsaka S (1998) Microglia-specific localization of a novel calcium binding protein, Iba1. Brain Res Mol Brain Res 57:1–9PubMedCrossRefGoogle Scholar
  22. 22.
    Ito D, Tanaka K, Suzuki S, Dembo T, Fukuuchi Y (2001) Enhanced expression of Iba1, ionized calcium-binding adapter molecule 1, after transient focal cerebral ischemia in rat brain. Stroke 32:1208–1215PubMedGoogle Scholar
  23. 23.
    Hirasawa T, Ohsawa K, Imai Y, et al (2005) Visualization of microglia in living tissues using Iba1-EGFP transgenic mice. J Neurosci Res 81:357–362PubMedCrossRefGoogle Scholar
  24. 24.
    Thomas WE (1992) Brain macrophages: evaluation of microglia and their functions. Brain Res Rev 17:61–74PubMedCrossRefGoogle Scholar
  25. 25.
    Zhang N, Komine-Kobayashi M, Tanaka R, Liu M, Mizuno Y, Urabe T (2005) Edaravone reduces early accumulation of oxidative products and sequential inflammatory responses after transient focal ischemia in mice brain. Stroke 36:2220–2225PubMedCrossRefGoogle Scholar
  26. 26.
    Imai H, Harland J, McCulloch J, Graham DI, Brown SM, Macrae IM (2002) Specific expression of the cell cycle regulation proteins, GADD34 and PCNA, in the peri-infarct zone after focal cerebral ischaemia in the rat. Eur J Neurosci 15:1929–1936PubMedCrossRefGoogle Scholar
  27. 27.
    Tanaka R, Komine-Kobayashi M, Mochizuki H, et al (2003) Migration of enhanced green fluorescent protein expressing bone marrow-derived microglia/macrophage into the mouse brain following permanent focal ischemia. Neuroscience 117:531–539PubMedCrossRefGoogle Scholar
  28. 28.
    Komine Kobayashi M, Chou N, Mochizuki H, Nakao A, Mizuno Y, Urabe T (2004) Dual role of Fcgamma receptor in transient focal cerebral ischemia in mice. Stroke 35:958–963PubMedCrossRefGoogle Scholar
  29. 29.
    Schilling M, Besselmann M, Muller M, Strecker JK, Ringelstein EB, Kiefer R (2005) Predominant phagocytic activity of resident microglia over hematogenous macrophages following transient focal cerebral ischemia: an investigation using green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 196:290–297PubMedCrossRefGoogle Scholar
  30. 30.
    Wells JE, Biernaskie J, Szymanska A, Larsen PH, Yong VW, Corbett D (2005) Matrix metalloproteinase (MMP)-12 expression has a negative impact on sensorimotor function following intracerebral haemorrhage in mice. Eur J Neurosci 21:187–196PubMedCrossRefGoogle Scholar
  31. 31.
    Mittelbronn M, Dietz K, Schluesener HJ, Meyermann R (2001) Local distribution of microglia in the normal adult human central nervous system differs by up to one order of magnitude. Acta Neuropathol (Berl) 101:249–255Google Scholar
  32. 32.
    Gehrmann J, Matsumoto Y, Kreutzberg GW (1995) Microglia: intrinsic immuneffector cell of the brain. Brain Res Rev 20:269–287PubMedCrossRefGoogle Scholar
  33. 33.
    Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • In Koo Hwang
    • 1
  • Ki-Yeon Yoo
    • 1
  • Dae Won Kim
    • 2
  • Soo Young Choi
    • 2
  • Tae-Cheon Kang
    • 1
  • Yong-Sun Kim
    • 3
    • 4
  • Moo Ho Won
    • 1
    • 4
    Email author
  1. 1.Department of Anatomy, College of MedicineHallym UniversityChunchonSouth Korea
  2. 2.Department of Biomedical Sciences, and Research Institute for Bioscience and BiotechnologyHallym UniversityChunchonSouth Korea
  3. 3.Department of Microbiology, College of MedicineHallym UniversityChuncheonRepublic of Korea
  4. 4.MRC Research InstituteHallym UniversityChuncheonRepublic of Korea

Personalised recommendations