Neurochemical Research

, Volume 31, Issue 4, pp 549–554 | Cite as

Assessment of Oxidative Damage Induced by Acute Doses of Morphine Sulfate in Postnatal and Adult Rat Brain

  • David Calderón Guzmán
  • Ivonne Espítia Vázquez
  • Norma Osnaya Brizuela
  • Raquel García Alvarez
  • Gerardo Barragán Mejía
  • Ernestina Hernández García
  • Daniel Santamaría
  • Mario la Rosa de Apreza
  • Hugo Juárez Olguín


The aim of the present study is to evaluate the oxidative damage in rats of different ages. Weaned rats of 25 g and adults of 300 g were used in groups of 6, a single i.p. dose of morphine sulfate of 3, 6 or 12 mg/kg was administered. All animals were sacrificed to measure GSH and 5-HT levels in brain by liquid chromatography, as well as Na+, K+-ATPase and total ATPase enzymatic activity. 5-HT levels decreased significantly (p<0.05) in adult animals that received 3 and 6 mg morphine. Na+, K+-ATPase activity increased significantly (p<0.05) in all groups of weaned animals. In adult animals, Na+, K+-ATPase and total ATPase partially diminished. GSH levels diminished significantly (p<0.05) both in weaned and in adult groups. The results indicate age-induced changes in cellular regulation and biochemical responses to oxidative stress induced by morphine.


Brain damage Free radicals Glutathione Morphine Oxidative damage Opioids 



We thank to Isabel Pérez Monfort for helping to translate the manuscript.


  1. 1.
    Ossipov MH, Lai J, King T, Vanderah TW, Porreca F (2005) Underlying mechanisms of pronociceptive consequences of prolonged morphine exposure. Biopolymers 80:319–324PubMedCrossRefGoogle Scholar
  2. 2.
    Nishikawa K, Tanobe K, Hinohara H, Okamoto T, Saito S, Goto F (2004) Molecular mechanism of morphine tolerance and biological approaches to resolve tolerance. Masui 53:502–507PubMedGoogle Scholar
  3. 3.
    Puppala BL, Matwyshyn G, Bhalla S, Gulati A (2004) Evidence that morphine tolerance may be regulated by endothelin in the neonatal rat. Biol Neonate 86:138–144PubMedCrossRefGoogle Scholar
  4. 4.
    Encuesta Nacional de Adicciones, SSA, CONADIC, INPRFM, DGE, INEGI. 2002Google Scholar
  5. 5.
    Sadee W, Wang D, Bilsky EJ (2005) Basal opioid receptor activity, neutral antagonists, and therapeutic opportunities. Life Sci 76:1427–1437PubMedCrossRefGoogle Scholar
  6. 6.
    Garzón J, Rodríguez MM, López FA, Sánchez BP (2005) Activation of μ-opioid receptors transfers control of Gα subunits to the regulator of G-protein signaling RGS9-2. J Biol Chem 280:8951–8960PubMedCrossRefGoogle Scholar
  7. 7.
    Hernández RJ (1982) A serotonin agonist-antagonist reversible effect on Na+, K+-ATPase activity in the developing rat brain. Dev Neurosci 5:326–331PubMedCrossRefGoogle Scholar
  8. 8.
    Wan-Kan O, Hosein EA (1981) Synaptosomal Na+, K+-ATPase as a membrane probe in studying the in vivo action of morphine. Can J Biochem 59:687–692PubMedCrossRefGoogle Scholar
  9. 9.
    Zhou J, Si P, Ruan Z (2001) Primary studies on heroin abuse and injury induced by oxidation and lipoperoxidation. Clin Med J (Engl) 114:297–302Google Scholar
  10. 10.
    Goudas LC, Carr DB, Maszczynska I, Marchand JE, Wurm WH et al. (1997) Differential effect of central versus parenteral administration of morphine sulfate on regional concentrations of reduced glutathione in rat brain. Pharmacology 54:92–97PubMedCrossRefGoogle Scholar
  11. 11.
    Wu F, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492PubMedGoogle Scholar
  12. 12.
    Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxides. Proc Natl Acad Sci USA 87:1629–1624CrossRefGoogle Scholar
  13. 13.
    Lue WM, Su MT, Lin WB, Tao PL (1999) The role of nitric oxide in the development of morphine tolerance in rat hippocampal slices. Eur J Pharmacol 383:129–135PubMedCrossRefGoogle Scholar
  14. 14.
    Ebadi M, Govitrapong P, Phansuwan-Pujito P, Nelson F, Reiter RJ (1998) Pineal opioid receptors and analgesic action of melatonin. J Pineal Res 24:193–200PubMedCrossRefGoogle Scholar
  15. 15.
    Enrico P, Mura MA, Esposito G, Serra P, Migheli R, et al., (1998) Effect of naloxone on morphine-induced changes in striatal dopamine metabolism and glutamate, ascorbic acid and uric release in freely moving rats. Brain Res 797:94–102PubMedCrossRefGoogle Scholar
  16. 16.
    Asensi M, Sastre J, Pallardó FV, Garcia DJ, Estrela JM, Viña J (1994) A high-performance liquid chromatography method for measurement of oxidized glutathione in biological samples. Anal Biochem 217:323–328PubMedCrossRefGoogle Scholar
  17. 17.
    Calderón GD, Hernández IJ, Espítia VI, Barragán MG, Juárez OH, et al. (2004) Pyridoxine, regardless of serotonin levels, increases production of 5-hydroxytryptophan in rat brain. Arch Med Res 35:271–274CrossRefGoogle Scholar
  18. 18.
    Hernández RJ, Chagoya G, (1986) Brain serotonin synthesis and Na+, K+-ATPase activity are increased postnatally after prenatal administration of L-Tryptophan. Dev Brain Res 25:221–226CrossRefGoogle Scholar
  19. 19.
    Bonting SL, Simon KD, Haukins NM (1961) Studies on sodium–potassium-activated adenosine triphosphatase. Arch Biochem Biophys 95:416–423PubMedCrossRefGoogle Scholar
  20. 20.
    Castilla-Serna L (1999) Estadística simplificada para la investigación en Ciencias de la Salud 2 Edición. Editorial Trillas México, DFGoogle Scholar
  21. 21.
    Fernstrom JD, Wurtman RJ (1972) Brain serotonin content: physiological regulation by plasma neutral amino acids. Science 178:414–416PubMedCrossRefGoogle Scholar
  22. 22.
    Hernández RJ (1973) Developmental pattern of the serotonin synthesizing enzyme in the brain of postnatal malnourished rats. Experientia 29:1487–1488PubMedCrossRefGoogle Scholar
  23. 23.
    Masocha W, González LG, Baeyens JM Agil A (2002) Mechanisms involved in morphine-induced activation of synaptosomal Na+, K+-ATPase. Brain Res 957:311–319PubMedCrossRefGoogle Scholar
  24. 24.
    Masocha W, Horvath G, Agil A, Ocaña M, Pozo E, et al. (2003) Role of Na+, K+-ATPase in morphine-induced antinociception. J Pharmacol Exp Ther 306:1122–1128PubMedCrossRefGoogle Scholar
  25. 25.
    Brase DA (1990) Is intracellular sodium involved in the mechanism of tolerance to opioid drugs? Med Hypotheses 32:161–167PubMedCrossRefGoogle Scholar
  26. 26.
    Pillai NP, Ross DH (1986) Effects of opiates on high-affinity Ca2+, Mg2+-ATPase in brain membrane subfractions. J Neurochem 47:1642–1646PubMedCrossRefGoogle Scholar
  27. 27.
    Goudas LC, Langlade A, Serrie A, Matson W, Milbury P, et al. (1999) Acute decreases in cerebrospinal fluid glutathione levels after intracerebroventricular morphine for cancer pain. Anesth Analg 89:1209–1215PubMedCrossRefGoogle Scholar
  28. 28.
    Jhamandas JH, Harris KH, Petrov T, Jhamandas KH (1996) Activation of nitric oxide-synthesizing neurones during precipitated morphine withdrawal. Neuroreport 7:2843–2846PubMedCrossRefGoogle Scholar
  29. 29.
    Driver AS, Kodavanti PR, Mundy WR (2000) Age-related changes in reactive oxygen species production in rat brain homogenates. Neurotoxicol Teratol 22:175–181PubMedCrossRefGoogle Scholar
  30. 30.
    Peckham EM, Barkley LM, Divin MF, Cicero TJ, Traynor JR (2005) Comparison of the antinociceptive effect of acute morphine in female and male Sprague–Dawley rats using the long-lasting mu-antagonist methocinnamox. Brain Res. 1058:137–147PubMedCrossRefGoogle Scholar
  31. 31.
    Klepstad P, Dale O, Skorpen F, Borchgrevink PC, Kaasa S (2005) Genetic variability and clinical efficacy of morphine. Acta Anaesthesiol Scand 49:902–908PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • David Calderón Guzmán
    • 1
  • Ivonne Espítia Vázquez
    • 1
  • Norma Osnaya Brizuela
    • 2
  • Raquel García Alvarez
    • 2
  • Gerardo Barragán Mejía
    • 1
  • Ernestina Hernández García
    • 3
  • Daniel Santamaría
    • 1
  • Mario la Rosa de Apreza
    • 1
  • Hugo Juárez Olguín
    • 3
    • 4
  1. 1.Laboratorio de NeuroquímicaInstituto Nacional de Pediatría (INP)Mexico D.F.Mexico
  2. 2.Laboratorio de Patología ExperimentalInstituto Nacional de Pediatría (INP)Mexico D.F.Mexico
  3. 3.Laboratorio de FarmacologíaInstituto Nacional de Pediatría Mexico D.F.Mexico
  4. 4.Departamento de Farmacología, Facultad de MedicinaUNAMMexicoMexico

Personalised recommendations