Neurochemical Research

, Volume 31, Issue 1, pp 109–120 | Cite as

Salviae Miltiorrhizae BGE Radix Increases Rat Striatal K+-Stimulated Dopamine Release and Activates the Dopamine Release with Protection Against Hydrogen Peroxide-Induced Injury in Rat Pheochromocytoma PC12 Cells

  • Tae-Wook Chung
  • Byung-Soo Koo
  • Kyeong-Oh Kim
  • Hee-Sang Jeong
  • Min-Gon Kim
  • Kang-Hung Chung
  • In-Seon Lee
  • Cheorl-Ho Kim
Article

The present study investigated the effect of the medicinal plant Salviae miltiorrhizae radix (SMR) on dopaminergic neurotransmission in comparison with amphetamine. The effect of SM (0.1 g/ml) on K+ (20 mM)-stimulated dopamine (DA) release from rat striatal slices was compared with amphetamine (10−4 M). Amphetamine and SMR significantly increased K+-stimulated DA release (P<0.001) from rat striatal slices when compared with K+-stimulated alone. On the other hand, to examine whether in vitro SMR treatment induces DA release in PC12 cells, the role of protein kinases has been investigated in the induction of the SMR-mediated events by using inhibitors of protein kinase C (PKC), mitogen activated protein kinase (MAP kinase) or protein kinase A (PKA). PKC inhibitors chelerythrine (50 and 100 nM), Ro31-8220 (100 nM) and the MAP kinase inhibitor, PD98059 (20 μM) inhibited the ability of SMR to elicit the SMR-stimulated DA release. The direct-acting PKC activator, 12-O-tetradecanoyl phorbol 13-acetate (TPA, 100 nM) mimicked the ability of SMR to elicit DA release. On the contrary, a selective PKA inhibitor, 50 μM Rp-8-Br-cAMP, blocked the development of SMR-stimulated DA release. The results demonstrated that SMR may stimulate DA release and that SMR-induced increases in MAP kinase and PKC are important for induction of the enhancement in transporter-mediated DA release and PKA was also required for the enhancement in SMR-stimulated DA release. SMR treatment (0.1–10 μg/ml) to the hydrogen peroxide (H2O2)-treated PC12 cells activated the enzyme activities such as catalase, superoxide dismutase and glutathione peroxidase, and decreased the malondialdehyde level, indicating that SMR has also protective effects against free radical-induced cell toxicity. Therefore, the mechanism by which SMR induces the enhancement in SMR-stimulated DA release is apparent. It remains to be determined whether the effect of SMR on DA function is important in its therapeutic use in the treatment of drug addiction.

Keywords

Salviae miltiorrhizae radix dopamine amphetamine PKC MAP kinase PKA free radicals hydrogen peroxide glutathione peroxidase catalase superoxide dismutase PC12 cells malondialdehyde 

Abbreviations

SMR

Salviae miltiorrahizae radix extract

H2O2

Hydrogenperoxide

MDA

malondialdehyde

AD

Alzheimer’s disease

β-amyloide peptide

SOD

superoxide dismutase

GSH-Px

glutathione peroxidase

GST

glutathione-S-transferase

AChE

acetylcholinesterse

PBS

phosphate-buffered saline

LDH

lactate dehydrogenase

MTT

(3-(4,5-dimethylthiazol-2-yl)- 2,5-diphenyltetrazolium bromide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Jiangsu New Medical College (ed.), 1977. Dictionary of Chinese Materia Medica. Shanghai: Science and Technology Press of Shanghai.Google Scholar
  2. 2.
    Yu, S., Kuang, P., Kanazawa, T., Onodera, K., Metoki, H., Oike, Y. 1998The effects of radix Salviae miltiorrhizae on lipid accumulation of peroxidized low density lipoprotein in mouse peritoneal macrophages-lipid analysis and morphological studiesJ. Tradit. Chin. Med.18292299PubMedGoogle Scholar
  3. 3.
    Kantor, L., Gnegy, M. E. 1998aEnhanced AMPH-mediated DA release in AMPH-pretreated rats depends on Ca2+ and CaM-dependent protein kinase IIFASEB J.12A159Google Scholar
  4. 4.
    Nakafuku, M., Kaziro, Y. 1993Epidermal growth factor and transforming growth factor-alpha can induce neuronal differentiation of rat pheochromocytoma PC12 cells under particular culture conditionsFEBS Lett.315227232CrossRefPubMedGoogle Scholar
  5. 5.
    Kim, C. H., Park, Y. G., Noh, S. H., Kim, Y. K. 2005PGE(2) induces the gene expression of bone matrix metalloproteinase-1 in mouse osteoblasts by cAMP-PKA signaling pathwayInt. J. Biochem. Cell. Biol.37375385CrossRefPubMedGoogle Scholar
  6. 6.
    Hug, H., Sarre, T. F. 1993Protein kinase C isoenzymes: Divergence in signal transductionBiochem. J.291329343PubMedGoogle Scholar
  7. 7.
    Licata, S. C., Pierce, R. C. 2003The roles of calcium/calmodulin-dependent and Ras/mitogen-activated protein kinases in the development of psychostimulant-induced behavioral sensitizationJ. Neurochem.851422PubMedGoogle Scholar
  8. 8.
    Self, D. W., Genova, L. M., Hope, B. T., Barnhart, W. J., Spencer, J. J., Nestler, E. J. 1998Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behaviorJ. Neurosci.1818481859PubMedGoogle Scholar
  9. 9.
    Hansen, T. O., Rehfeld, J. F., Nielsen, F. C. 2000Cyclic AMP-induced neuronal differentiation via activation of p38 mitogen-activated protein kinaseJ. Neurochem.7518701877PubMedGoogle Scholar
  10. 10.
    Jessen, U., Novitskaya, V., Pedersen, N., Serup, P., Berezin, V., Bock, E. 2001The transcription factors CREB and c-Fos play key roles in NCAM-mediated neuritogenesis in PC12-E2 cellsJ. Neurochem.7911491160CrossRefPubMedGoogle Scholar
  11. 11.
    Borgatti, P., Mazzoni, M., Carini, C., Neri, L. M., Marchisio, M., Bertolaso, L., Previati, M., Zauli, G., Capitani, S. 1996Changes of nuclear protein kinase C activity and isotype composition in PC12 cell proliferation and differentiationExp. Cell Res.2247278CrossRefPubMedGoogle Scholar
  12. 12.
    Masaki, N., Kyle, M. E., Farber, J. L. 1989Mitochondrial damage as a mechanism of cell injury in the killing of cultured hepatocytes by tert-butyl hydroperoxideArch. Biochem. Biophys.270672680CrossRefPubMedGoogle Scholar
  13. 13.
    Sun, Y. 1990Free radicals, antioxidant enzymes and carcinogenesisJ. Free Radical Biol. Med.8583599Google Scholar
  14. 14.
    Halliwell, B. 1994Free radical, antioxidant and human disease: curiosity, cause, or consequence?Lancet344721724CrossRefPubMedGoogle Scholar
  15. 15.
    Li, H. B., Lai, J. P., Jiang, Y., Chen, F. 2002Preparative isolation and purification of salvianolic acid B from the Chinese medicinal plant Salvia miltiorrhiza by high-speed counter-current chromatographyJ. Chromatogr. A943235239CrossRefPubMedGoogle Scholar
  16. 16.
    Liu, J., Shen, H. M., Ong, C. N. 2001Role of intracellular thiol depletion, mitochondrial function and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cellsLife Sci.6918331850PubMedGoogle Scholar
  17. 17.
    Kim, K. O. 2004. Salviae miltiorrhizae radix used in the treatment of addiction mimics the action of amphetamine on in vitro rat striatal dopamine release and activates the dopamine release in rat pheochromocytoma PC12 cells. Ph.D. Thesis. Dongguk University Graduate School, Kyungju, Korea.Google Scholar
  18. 18.
    Bennett, G. W., Sharp, T., Marsden, C. A., Parker, T. L. 1983A manually-operated brain tissue slicer suitable for neurotransmitter release studiesJ. Neurosci. Meth.7107115Google Scholar
  19. 19.
    Thongsaard, W., Kendall, D. A., Bennett, G. W., Marsden, C. A. 1997A simple method for measuring DA release from rat brain slicesJ. Pharmacol. Toxicol. Meth.37143148CrossRefGoogle Scholar
  20. 20.
    Ebstein, R. P., Seamon, K., Crevelling, C. R., Daly, J. W. 1982Release of norepinephrine from brain vesicular preparations: Effects of an adenylate cyclase activator, forskolin and a phosphodiesterase inhibitorCell. Mol. Neurobiol.2179192PubMedGoogle Scholar
  21. 21.
    Kantor, L., Park, Y. H., Wang, K. K. W., Gnegy, M. E. 2002Enhanced amphetamine-mediated dopamine release develops in PC12 cells after repeated amphetamine treatmentEur. J. Pharmacol.4512735CrossRefPubMedGoogle Scholar
  22. 22.
    Kim, H. J., Lee, W. H., Yoon, C. H., Jeong, J. C., Nam, K. S., Kim, H. M., Choo, Y. K., Lee, M. C., Kim, C. H. 2001Bombycis corpus extract prevents amyloid-beta-induced cytotoxicity and protects superoxide dismutase activity in cultured rat astrocytesPharmacol. Res.431116PubMedGoogle Scholar
  23. 23.
    Hansen, M. B., Nielsen, S. E., Berg, K. 1989Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell killJ. Immunol. Meth.119203210CrossRefGoogle Scholar
  24. 24.
    Mills, G. C. 1959The purification and properties of glutathione peroxidase of erythrocytesJ. Biol. Chem.234502506PubMedGoogle Scholar
  25. 25.
    Beers, R. F., Sizer, I. W. 1952A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalaseJ. Biol. Chem.195133140PubMedGoogle Scholar
  26. 26.
    Yagi, K. A. 1976Simple fluorometric assay for lipoperoxide in blood plasmaBiochem. Med.15212216CrossRefPubMedGoogle Scholar
  27. 27.
    Shafer, R. A., Levant, B. 1998The D3 dopamine receptor in cellular and organismal functionPsychopharmacology (Berlin)135116CrossRefGoogle Scholar
  28. 28.
    Leshner, A. I., Koob, G. F. 1999Drugs of abuse and the brainProc. Assoc. Am. Physicians11199108CrossRefPubMedGoogle Scholar
  29. 29.
    Kim, J. W. 1998Effects of Magnesium Lithospermate B from Salvia miltiorrhiza on Hepatic Antioxidant System in Senescence Accelerated Mouse (SAM-R/I)Kor. J. Gerotol.88389Google Scholar
  30. 30.
    Ahn, B. Y. 1999Mutagenic effect of Tansen (Salvia miltiorrhiza Bge)Kor. J. Appl. Microbiol27197202Google Scholar
  31. 31.
    Kim, S. B. 1998Protective effect of Salviae-radix extraction in H2O2 induced renal cell injuryJ. Kor. Oriental Med. Soc.193848Google Scholar
  32. 32.
    Sun, J. 2002Effect of natural products on ischemic heart diseases and cardiovascular systemActa Pharmacol. Sin.2311421151PubMedGoogle Scholar
  33. 33.
    Cao, E. H., Liu, X. Q., Wang, J. J., Xu, N. F. 1996Effect of natural antioxidant tanshinone II-A on DNA damage by lipid peroxidation in liver cellsFree Radic. Biol. Med.20801806CrossRefPubMedGoogle Scholar
  34. 34.
    Yu, S., Kuang, P., Kanazawa, T., Onodera, K., Metoki, H., Oike, Y. 1998The effects of radix Salviae miltiorrhizae on lipid accumulation of peroxidized low density lipoprotein in mouse peritoneal macrophages-lipid analysis and morphological studiesJ. Trad. Chin. Med.18292299Google Scholar
  35. 35.
    Zhao, B. L., Jiang, W., Zhao, Y., Hou, J. W., Xin, W. J. 1996Scavenging effects of Salvia miltiorrhiza on free radicals and its protection for myocardial mitochondrial membranes from ischemia-reperfusion injuryBiochem. Mol. Biol. Int.3811711182PubMedGoogle Scholar
  36. 36.
    Kuang, P., Tao, Y., Tian, Y. 1996Radix Salviae miltiorrhizae treatment results in decreased lipid peroxidation in reperfusion injuryJ. Trad. Chin. Med.16138142Google Scholar
  37. 37.
    Li, H. B., Lai, J. P., Jiang, Y., Chen, F. 2002Preparative isolation and purification of salvianolic acid B from the Chinese medicinal plant Salvia miltiorrhiza by high-speed counter-current chromatographyJ. Chromatogr. A943235239CrossRefPubMedGoogle Scholar
  38. 38.
    Liu, J., Shen, H. M., Ong, C. N. 2001Role of intracellular thiol depletion, mitochondrial function and reactive oxygen species in Salvia miltiorrhiza-induced apoptosis in human hepatoma HepG2 cellsLife Sci.6918331850PubMedGoogle Scholar
  39. 39.
    Hsieh, M. T., Peng, W. H., Wu, C. R., Wang, W. H. 2000The ameliorating effects of the cognitive-enhancing Chinese herbs on scopolamine-induced amnesia in ratsPhytother. Res.14375377CrossRefPubMedGoogle Scholar
  40. 40.
    Jie, X. Y., Tan, B. K., Zhu, Y. Z. 2000Salvia miltiorrhiza and ischemic diseasesActa Pharmacol. Sin.2110891094Google Scholar
  41. 41.
    Koo, B. S., Kwon, T. S., Lee, Y. C., Kim, H. M., Kim, C. H. 2004Salviae miltiorrhizae Radix inhibits superoxide generation by activated rat microglias and mimics the action of amphetamine on in vitro rat striatal dopamine releaseNeurochem. Res.2918371845CrossRefPubMedGoogle Scholar
  42. 42.
    Rice-Evans, C. A., Miller, N. J., Paganga, G. 1996Structure–antioxidant activity relationship of flavonoids and phenolic acidsFree Radic. Biol. Med.20933CrossRefPubMedGoogle Scholar
  43. 43.
    Glick, S. D., Maisonneuve, I. M. 2000Development of novel medications for drug addiction. The legacy of an African ShrubAnn. New York Acad. Sci.90988103Google Scholar
  44. 44.
    Roothman, R. B., Elmer, G. I., Shippenberg, T. S., Rea, W., Baumann, M. H. 1998Phentermine and fenfluramine. Preclinical studies in animal models of cocaine addictionAnn. New York Acad. Sci.8445974Google Scholar
  45. 45.
    Routledge, C., Thorn, L., Ashmeade, T., Taylor, S. 1996Elucidation of D3 receptor function in vivo: do D3 receptors mediate inhibition of dopamine neuronal activity?Biochem. Soc. Trans.24199201PubMedGoogle Scholar
  46. 46.
    Wood, M. D., Boyfield, I., Nash, D. J., Jewitt, F. R., Avenell, K. Y., Riley, G. J. 2000Evidence for antagonist activity of the dopamine D3 receptor partial agonist, BP 897, at human dopamine D3 receptorEur. J. Pharmacol.4074751CrossRefPubMedGoogle Scholar
  47. 47.
    Gotz, M. E., Kunig, G., Riederer, P., Youdim, M. B. 1997Oxidative stress: Free radical production in neuronal degenerationPharmacol. Ther.6337122Google Scholar
  48. 48.
    Chance, B., Sies, H., Boveris, A. 1979Hydroperoxide metabolism in mammalian organsPhysiol. Rev.59527605PubMedGoogle Scholar
  49. 49.
    Ip, C., Hayes, C., Budnick, R. M., Ganther, H. E. 1991Chemical form of selenium, critical metabolites, and cancer preventionCancer Res.51595600PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • Tae-Wook Chung
    • 1
  • Byung-Soo Koo
    • 2
  • Kyeong-Oh Kim
    • 1
    • 3
  • Hee-Sang Jeong
    • 2
  • Min-Gon Kim
    • 4
  • Kang-Hung Chung
    • 5
  • In-Seon Lee
    • 6
  • Cheorl-Ho Kim
    • 1
    • 7
  1. 1.Department of Biological ScienceSungkyunkwan University and National Research Laboratory for GlycobiologySuwon CityKorea
  2. 2.Department of Oriental MedicineDongguk UniversityKyungjuKorea
  3. 3.Department of Oriental MedicineDongshin UniversityNajuKorea
  4. 4.Nanobiotechnology Research CenterKorea Research Institute of Bioscience and BiotechnologyYusong-GuKorea
  5. 5.Department of Food Science and TechnologySeoul National University of TechnologySeoulKorea
  6. 6.The Center of Traditional Microorganisms Resources (TMR)Keimyun UniversityDaeguKorea
  7. 7.Department of Biological ScienceSungkyunkwan UniversitySuwon CityKorea

Personalised recommendations