Neurochemical Research

, Volume 30, Issue 11, pp 1429–1438 | Cite as

Impact of Venlafaxine on Gene Expression Profile in Lymphocytes of the Elderly with Major Depression – Evolution of Antidepressants and the Role of the “Neuro-Immune” System

  • János Kálmán
  • András Palotás
  • Anna Juhász
  • Ágnes Rimanóczy
  • Marietta Hugyecz
  • Zsuzsa Kovács
  • Gabriella Galsi
  • Zoltán Szabó
  • Magdolna Pákáski
  • Liliána Z. Fehér
  • Zoltán Janka
  • László G. Puskás
Article

Abstract

Antidepressive drugs offer considerable symptomatic relief in mood disorders and, although commonly discovered by screening with single biological targets, most interact with multiple receptors and signaling pathways. Antidepressants require a treatment regimen of several weeks before clinical efficacy is achieved in patient populations. While the biochemical mechanisms underlying the delayed temporal profile remain unclear, molecular adaptations over time are likely involved. The selective serotonin and noradrenaline reuptake inhibitor, venlafaxine, offers a dual antidepressive action. Its pharmacological behavior, however, is unknown at the genetic level, and it is difficult to monitor in human brain samples. Because the hypothalamic-pituitary-adrenal axis is often severely disrupted in mood disorders, lymphocytes may serve as models of neuropsychiatric conditions. As such, we examined the role of venlafaxine on the gene expression profile of human lymphocytes. DNA microarray was used to measure the expression patterns of multiple genes in human lymphocytes from depressed patients treated with this mood stabilizer. In this self-controlled study, RNAs of control and treated samples were purified, converted into cDNA and labeled with either Cy3 or Cy5, mixed and hybridized to DNA microarrays containing human oligonucleotides corresponding to more than 8,000 genes. Genes that were differentially regulated in response to treatment were selected for follow up on the basis on novelty, gene identity, and level of over-expression/repression, and selected transcripts were profiled by real-time PCR (data have been normalized to β-actin). Using software analysis of the microarray data, a number of transcripts were differentially expressed between control and treated samples, of which only 57 were found to significantly vary with the “P” value of 0.05 or lower as a result of exposure to venlafaxine. Of these, 31 genes were more highly expressed and 26 transcripts were found to be significantly less abundant. Most selected genes were verified with QRT-PCR to alter. As such, independent verification using QRT-PCR demonstrated the reliability of the method. Genes implicated in ionic homeostasis were differentially expressed, as were genes associated with cell survival, neural plasticity, signal transduction, and metabolism. Understanding how gene expression is altered over a clinically relevant time course of administration of venlafaxine may provide insight into the development of antidepressant efficacy as well as the underlying pathology of mood disorders. These changes in lymphocytes are thought to occur in the brain, and a “neuro-immune system” is proposed by this study.

Key words

Antidepressant depression gene expression lymphocyte microarray neuronal plasticity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pacher, P., Kecskeméti, V. 2004Cardiovascular side effects of new antidepressants and antipsychotics: new drugs, old concerns?Curr. Pharm. Des1024632475CrossRefPubMedGoogle Scholar
  2. 2.
    Muth, E. A., Haskins, J. T., Moyer, J. A., Husbands, G. E., Nielsen, S. T., Sigg, E. B. 1986Antidepressant biochemical profile of the novel bicyclic compound Wy−45,030, an ethyl cyclohexanol derivativeBiochem. Pharmacol3544934497CrossRefPubMedGoogle Scholar
  3. 3.
    Faraj, B. A., Olkowski, Z. L., Jackson, R. T. 1994Expression of a high-affinity serotonin transporter in human lymphocytesInt. J. Immunopharmacol16561567CrossRefPubMedGoogle Scholar
  4. 4.
    Ader, R., Felten, D. L., Cohen, N. 1991Psychoneuroimmunology 2Academic PressNew YorkGoogle Scholar
  5. 5.
    Smith, E. M., Galin, F. S., LeBoeuf, R. D., Coppenhaver, D. H., Harbour, D. V., Blalock, J. E. 1990Nucleotide and amino acid sequence of lymphocyte-derived corticotropin: endotoxin induction of a truncated peptideProc. Natl. Acad. Sci. USA8710571060PubMedGoogle Scholar
  6. 6.
    Blalock, J. E. 1994The immune system: our sixth senseImmunologist2815Google Scholar
  7. 7.
    Blalock, J. E., Smith, E. M. 1980Human leukocyte interferon: structural and biological relatedness to adrenocorticotropic hormone and endorphinsProc. Natl. Acad. Sci. USA7759725974PubMedGoogle Scholar
  8. 8.
    Felten, D., Felten, S., Bellinger, D., Ackerman, D., Madden, K. 1987Noradrenergic sympathetic neural interactions with immune system: structure and functionImmunol. Rev100225226PubMedGoogle Scholar
  9. 9.
    Schwarz, M. J., Chiang, S., Muller, N., Ackenheil, M. 2001T-helper-1 and T-helper-2 responses in psychiatric disordersBrain Behav. Immun15340370CrossRefPubMedGoogle Scholar
  10. 10.
    Maes, M., Bosmans, E., Calabrese, J., Smith, R., Meltzer, H. Y. 1995Interleukin−2 and interleukin−6 in schizophrenia and mania: effects of neuroleptics and mood stabilizersJ. Psychiatr. Res29141152CrossRefPubMedGoogle Scholar
  11. 11.
    Irwin, M. 1999Immune correlation of depressionAdv. Exp. Med. Biol46124Google Scholar
  12. 12.
    Herbert, T. B., Cohen, S. 1993Depression and immunity: A meta-analytic reviewPsychol. Bull113472486CrossRefPubMedGoogle Scholar
  13. 13.
    Calabrese, J. R., Kling, M. A., Gold, P. W. 1987Alterations in immunocompetence during stress, bereavement, and depression: focus on neuroendocrine regulationAm. J. Psychiatr14411231134PubMedGoogle Scholar
  14. 14.
    Schleifer, S. J., Keller, S. E., Meyerson, A. T., Raskin, M. J., Davis, K. L., Stein, M. 1984Lymphocyte function in major depressive disorderArch. Gen. Psychiatry41484486PubMedGoogle Scholar
  15. 15.
    Irwin, M., Smith, T. L., Gillin, J. C. 1987Low natural killer cytotoxicity in major depressionLife. Sci4121272133CrossRefPubMedGoogle Scholar
  16. 16.
    Zvara, Á., Szekeres, G., Janka, Z., Kelemen, J. Z., Cimmer, C., Sántha, M., Puskás, L. G. 2005Over-expression of dopamine D(2) receptor and inwardly rectifying potassium channel genes in drug-naive schizophrenic peripheral blood lymphocytes as potential diagnostic markersDis. Markers216169PubMedGoogle Scholar
  17. 17.
    Meredith, E. J., Chamba, A., Holder, M. J., Barnes, N. M., Gordon, J. 2005Close encounters of the monoamine kind: immune cells betray their nervous dispositionImmunology115289295CrossRefPubMedGoogle Scholar
  18. 18.
    Puskás, L. G., Zvara, Á., Hackler, L.,Jr., Micsik, T., Hummelen, P. 2002Production of bulk amounts of universal RNA for DNA microarraysBiotechniques33898904PubMedGoogle Scholar
  19. 19.
    Puskás, L. G., Hackler, L.,Jr., Kovács, G., Kupihár, Z., Zvara, Á., Micsik, T., Hummelen, P. 2002Recovery of cyanine-dye nucleotide triphosphatesAnal. Biochem305279281PubMedGoogle Scholar
  20. 20.
    Onody, A., Zvara, Á., Hackler, L.,Jr., Vígh, L., Ferdinándy, P, Puskás, L. G. 2003Effect of classic preconditioning on the gene expression pattern of rat hearts: a DNA microarray studyFEBS Lett5363540PubMedGoogle Scholar
  21. 21.
    Kitajka, K., Puskás, L. G., Zvara, Á., Hackler, L.,Jr., Barcelo-Coblijn, G, Yeo, Y. K., Farkas, T. 2002The role of n-3 polyunsaturated fatty acids in brain: modulation of rat brain gene expression by dietary n-3 fatty acidsProc. Natl. Acad. Sci. USA9926192624CrossRefPubMedGoogle Scholar
  22. 22.
    Cleveland, W. S. 1974Robust locally weighted regression and smoothing scatterplotsJ. Am. Statist. Assoc74829836Google Scholar
  23. 23.
    Yang, Y. H., Dudoit, S., Luu, P., Lin, D. M., Peng, V., Ngai, J., Speed, T. P. 2002Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variationNucleic Acids Res3015Google Scholar
  24. 24.
    Pfaffl, M. W. 2001A new mathematical model for relative quantification in real-time RT-PCRNucleic Acids Res2945CrossRefGoogle Scholar
  25. 25.
    Rajeevan, M. S., Ranamukhaarachchi, D. G., Vernon, S. D., Unger, E. R. 2001Use of real-time quantitative PCR to validate the results of cDNA array and differential display PCR technologiesMethods25443451CrossRefPubMedGoogle Scholar
  26. 26.
    Yoshida, S., Yashar, B. M., Hiriyanna, S., Swaroop, A. 2002Microarray analysis of gene expression in the aging human retinaInvest. Opthalmol. Vis. Sci4325542560Google Scholar
  27. 27.
    Palotás, A., Puskás, L. G., Kitajka, K., Palotás, M., Molnár, J., Pákáski, M., Janka, Z., Penke, B., Kálmán, J. 2004The effect of citalopram on gene expression profile of Alzheimer lymphocytesNeurochem. Res2915631570PubMedGoogle Scholar
  28. 28.
    Fehér, L. Z., Kálmán, J., Puskás, L. G., Gyülvészi, G., Kitajka, K., Penke, B., Palotás, M., Samarova, E. I., Molnár, J., Zvara, Á., Matin, K., Bódi, N., Hugyecz, M., Pákáski, M., Bjelik, A., Juhász, A., Bogáts, G., Janka, Z., and Palotás, A. 2005. Impact of haloperidol and risperidone on gene expression profile in the rat cortex. Neurochem. Int. 47:271–280Google Scholar
  29. 29.
    Wilder, R. L. 1995Neuroendocrine–immune system interaction and autoimmunityAnnu. Rev. Immunol13307338CrossRefPubMedGoogle Scholar
  30. 30.
    Rook, G. A. V. 1994Hormones, peripherally activated prohormones and regulation of immunityAnnu. Rev. Immunol20125163Google Scholar
  31. 31.
    Palotás, A., Kálmán, J., Puskás, L. G., Kemény, L., Janka, Z., and Penke, B. 2005. Calcium, and the Alzheimer’s Ca2+- tastrophe. in Coleman, R. M. (ed), Trends in Neurochemistry Research, Nova Science Publishers, IncGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • János Kálmán
    • 1
  • András Palotás
    • 1
    • 2
  • Anna Juhász
    • 1
  • Ágnes Rimanóczy
    • 1
  • Marietta Hugyecz
    • 1
  • Zsuzsa Kovács
    • 1
  • Gabriella Galsi
    • 1
  • Zoltán Szabó
    • 1
  • Magdolna Pákáski
    • 1
  • Liliána Z. Fehér
    • 3
  • Zoltán Janka
    • 1
  • László G. Puskás
    • 3
  1. 1.Alzheimer’s Disease Research Center, Department of Psychiatry, Albert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of MedicineUniversity of SzegedSzegedHungary
  2. 2.Division of Cardiac Surgery, Center for CardiologyAlbert Szent-Györgyi Medical and Pharmaceutical Center, Faculty of Medicine, University of Szeged, Pécsi uSzegedHungary
  3. 3.Laboratory of Functional Genomics, Biological Research CenterHungarian Academy of ScienceSzegedHungary

Personalised recommendations