Neurochemical Research

, Volume 30, Issue 5, pp 603–611 | Cite as

Signal Transduction Mechanisms Involved in the Proliferation of C6 Glioma Cells Induced by Lysophosphatidic Acid

  • Sirlene R. Cechin
  • Peter R. Dunkley
  • Richard RodnightEmail author


We studied pathways involved in the proliferation of rat C6 glioma cells induced by lysophosphatidic acid (LPA), a phospholipid with diverse biological functions. LPA induced a dose–responsive proliferation of C6 cells after 48 h. Proliferation was blocked by inhibitors of the sodium/proton exchanger type 1 (NHE1), Rho-associated kinase, the phosphatidylinositol 3-kinase/Akt pathway (PI3K/Akt), protein kinase C (PKC) and extracellular signal regulated kinase kinase (MEK). Phospho-specific antibodies were used to investigate the pathways involved. LPA induced transient (10 min) phosphorylations of ERK 1/2, Akt and the transcription factor CREB. The LPA-induced phosphorylation of ERK 1/2 and CREB was blocked by inhibition of PI3K, PKC and MEK, but that of Akt was only inhibited by wortmannin, the PI3K inhibitor. Inhibition of Rho kinase or NHE1 did not reduce the LPA-induced phosphorylation of ERK, Akt or CREB. The results were compared with the effects of LPA on transduction pathways in other cell types.


C6 glioma cells lysophosphatidic acid (LPA) sodium/proton exchange enzyme type 1 (NHE1) Rho-associated kinase phosphatidyinositol 3-kinase/Akt CREB ERK 1/2 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Holland, E. C. 2001Gliomagenesis: genetic alterations and mouse modelsNat. Rev. Genet.2120129CrossRefPubMedGoogle Scholar
  2. 2.
    Wen, P. Y., Kesari, S. 2004Malignant gliomasCurr. Neurol. Neurosci. Rep.4218227PubMedGoogle Scholar
  3. 3.
    Corven, E. J., Groenink, A., Jalink, K., Eichholz, T., Moolenaar, W. H. 1989Lysophosphatidate-induced cell proliferation: identification and dissection of signalling pathways mediated by G proteinsCell594554CrossRefPubMedGoogle Scholar
  4. 4.
    Suidan, H. S., Nobes, C. D., Hall, A., Monard, D. 1997Astrocyte spreading in response to thrombin and lysophosphatidic acid is dependent on the Rho GTPaseGlia21244252CrossRefPubMedGoogle Scholar
  5. 5.
    Ramakers, G. J. A., Moolenaar, W. H. 1998Regulation of astrocyte morphology by RhoA and lysophosphatidic acidExp. Cell Res.245252262CrossRefPubMedGoogle Scholar
  6. 6.
    Fukushima, N., Weiner, J. A., Chun, J. 2000Lysophosphatidic acid (LPA) is a novel extracellular regulator of cortical neuroblast morphologyDev. Biol.228618CrossRefPubMedGoogle Scholar
  7. 7.
    Cechin, S. R., Gottfried, C., Prestes, C. C., Wofchuk, S. T., Andrighetti, L., Rodnight, R. 2002Astrocyte stellation in media lacking bicarbonate: possible relation to intracellular pH and tyrosine phosphorylationBrain Res.9461223CrossRefPubMedGoogle Scholar
  8. 8.
    Moolenaar, W. H., Meeteren, L. A., Giepmans, B. N. 2004The ins and outs of lysophosphatidic acid signalingBioessays26870881CrossRefPubMedGoogle Scholar
  9. 9.
    Ishii, I., Fukushima, N., Ye, X., Chun, J. 2004Lysophospholipid receptors: signaling and biologyAnnu. Rev. Biochem.73321354CrossRefPubMedGoogle Scholar
  10. 10.
    Contos, J. J., Ishii, I., Chun, J. 2000Lysophosphatidic acid receptorsMol. Pharmacol.5811881196PubMedGoogle Scholar
  11. 11.
    Anliker, B., Chun, J. 2004Lysophospholipid G protein-coupled receptorsJ. Biol. Chem.2792055520558CrossRefPubMedGoogle Scholar
  12. 12.
    Tabuchi, S., Kume, K., Aihara, M., Shimizu, T. 2000Expression of lysophosphatidic acid receptor in rat astrocytes: mitogenic effect and expression of neurotrophic genesNeurochem. Res.25573582CrossRefPubMedGoogle Scholar
  13. 13.
    Steiner, M. R, Urso, J. R., Klein, J., Steiner, S. M. 2002Multiple astrocyte responses to lysophosphatidic acidsBiochim. Biophys. Acta1582154160PubMedGoogle Scholar
  14. 14.
    Aoki, J. 2004Mechanisms of lysophosphatidic acid productionSemin. Cell Dev. Biol.15477489CrossRefPubMedGoogle Scholar
  15. 15.
    Xie, Y., Meier, K. E. 2004Lysophospholipase D and its role in LPA productionCell Signal.16975981CrossRefPubMedGoogle Scholar
  16. 16.
    Sano, T., Baker, D., Virag, T., Wada, A., Yatomi, Y., Kobayashi, T., Igarashi, Y., Tigyi, G. 2002Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in bloodJ. Biol. Chem.2772119721206CrossRefPubMedGoogle Scholar
  17. 17.
    Nam, S. W., Clair, T., Campo, C. K., Lee, H. Y., Liotta, L. A., Stracke, M. L. 2000Autotaxin (ATX), a potent tumor motogen, augments invasive and metastatic potential of ras-transformed cellsOncogene19241247CrossRefPubMedGoogle Scholar
  18. 18.
    Umezu-Goto, M., Kishi, Y., Taira, A., Hama, K., Dohmae, N., Takio, K., Yamori, T., Mills, G. B., Inoue, K., Aoki, J., Arai, H. 2002Autotaxin has lysophospholipase D activity leading to tumor cell growth and motility by lysophosphatidic acid productionJ. Cell Biol.158227233CrossRefPubMedGoogle Scholar
  19. 19.
    Tokumura, A. 2002Physiological and pathophysiological roles of lysophosphatidic acids produced by secretory lysophospholipase D in body fluidsBiochim. Biophys. Acta15821825PubMedGoogle Scholar
  20. 20.
    Hama, K., Aoki, J., Fukaya, M., Kishi, Y., Sakai, T., Suzuki, R., Ohta, H., Yamori, T., Watanabe, M., Chun, J., Arai, H. 2004Lysophosphatidic acid and autotaxin stimulate cell motility of neoplastic and non-neoplastic cells through LPA1J. Biol. Chem.2791763417639CrossRefPubMedGoogle Scholar
  21. 21.
    Mills, G. B., Moolenaar, W. H. 2003The emerging role of lysophosphatidic acid in cancerNat. Rev. Cancer3582591CrossRefPubMedGoogle Scholar
  22. 22.
    Umezu-Goto, M., Tanyi, J., Lahad, J., Liu, S., Yu, S., Lapushin, R., Hasegawa, Y., Lu, Y., Trost, R., Bevers, T., Jonasch, E., Aldape, K., Liu, J., James, R. D., Ferguson, C. G., Xu, Y., Prestwich, G. D., Mills, G. B. 2004Lysophosphatidic acid production and action: validated targets in cancer?J. Cell. Biochem.9211151140CrossRefPubMedGoogle Scholar
  23. 23.
    Manning, T. J.,Jr., Parker, J. C., Sontheimer, H. 2000Role of lysophosphatidic acid and Rho in glioma cell motilityCell Motil. Cytoskeleton45185199CrossRefPubMedGoogle Scholar
  24. 24.
    Shida, D., Kitayama, J., Yamaguchi, H., Okaji, Y., Tsuno, N. H., Watanabe, T., Takuwa, Y., Nagawa, H. 2003Lysophosphatidic acid (LPA) enhances the metastatic potential of human colon carcinoma DLD1 cells through LPA1Cancer Res.6317061711PubMedGoogle Scholar
  25. 25.
    Westermann, A. M., Havik, E., Postma, F. R., Beijnen, J. H., Dalesio, O., Moolenaar, W. H., Rodenhuis, S. 1998Malignant effusions contain lysophosphatidic acid (LPA)-like activityAnn. Oncol.9437442CrossRefPubMedGoogle Scholar
  26. 26.
    Mills, G. B., Eder, A., Fang, X., Hasegawa, Y., Mao, M., Lu, Y., Tanyi, J., Tabassam, F. H., Wiener, J., Lapushin, R., Yu, S., Parrott, J. A., Compton, T., Tribley, W., Fishman, D., Stack, M. S., Gaudette, D., Jaffe, R., Furui, T., Aoki, J., Erickson, J. R. 2002Critical role of lysophospholipids in the pathophysiology, , diagnosis, and management of ovarian cancerCancer Treat. Res.107259283PubMedGoogle Scholar
  27. 27.
    Barth, R. F. 1998Rat brain tumor models in experimental neuro-oncology: the 9L, C6, T9, F98, RG2 (D74), RT-2 and CNS-1 gliomasJ. Neurooncol.3691102CrossRefPubMedGoogle Scholar
  28. 28.
    Takano, T., Lin, J. H. C., Arcuino, G., Gao, Q., Yang, J., Nedergaard, M. 2001Glutamate release promotes growth of malignant gliomasNat. Med.710101015CrossRefPubMedGoogle Scholar
  29. 29.
    Putney, L. K., Denker, S. P., Barber, D. L. 2002The changing face of the Na+/H+ exchanger, NHE1: structure, regulation and cellular actionsAnnu. Rev. Pharmacol. Toxicol.42527552CrossRefPubMedGoogle Scholar
  30. 30.
    Putney, L. K., Barber, D. L. 2003Na–H exchange-dependent increase in intracellular pH times G2/M entry and transitionJ. Biol. Chem.2784464544649CrossRefPubMedGoogle Scholar
  31. 31.
    Vexler, Z. S., Symons, M., Barber, D. L. 1996Activation of Na+–H+ exchange is necessary for Rho-induced stress fiber formationJ. Biol. Chem.2712228122284CrossRefPubMedGoogle Scholar
  32. 32.
    Rotin, D., Steele-Norwood, D., Grinstein, S., Tannock, I. 1989Requirement of the Na+/H+ exchanger for tumor growthCancer Res.49205211PubMedGoogle Scholar
  33. 33.
    McLean, L. A., Roscoe, J., Jorgensen, N. K., Gorin, F. A., Cala, P. M. 2000Malignant gliomas display altered pH regulation by NHE1 compared with nontransformed astrocytesAm. J. Physiol. Cell Physiol.278C676C688PubMedGoogle Scholar
  34. 34.
    Reshkin, S. J., Bellizzi, A., Caldeira, S., Albarani, V., Malanchi, I., Poignee, M., Alunni-Fabbroni, M., Casavola, V., Tommasino, M. 2000Na+/H+ exchanger-dependent intracellular alkalinization is an early event in malignant transformation and plays an essential role in the development of subsequent transformation-associated phenotypes FASEB J.1421852197CrossRefPubMedGoogle Scholar
  35. 35.
    Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J. T., Bokesch, H., Kenney, S., Boyd, M. R. 1990New colorimetric cytotoxicity assay for anticancer-drug screeningJ. Natl. Cancer Inst.8211071112PubMedGoogle Scholar
  36. 36.
    Hawes, B. E., Luttrell, L. M., Biesen, T., Lefkowitz, R. J. 1996Phosphatidylinositol 3-kinase is an early intermediate in the G beta gamma-mediated mitogen-activated protein kinase signaling pathwayJ. Biol. Chem.2711213312136CrossRefPubMedGoogle Scholar
  37. 37.
    Roche, S., Downward, J., Raynal, P., Courtneidge, S. A. 1998A function for phosphatidylinositol 3-kinase beta (p85alpha-p110beta) in fibroblasts during mitogenesis: requirement for insulin- and lysophosphatidic acid-mediated signal transductionMol. Cell Biol.1871197129PubMedGoogle Scholar
  38. 38.
    Baudhuin, L. M., Cristina, K. L., Lu, J., Xu, Y. 2002Akt activation induced by lysophosphatidic acid and sphingosine-1-phosphate requires both mitogen-activated protein kinase kinase and p38 mitogen-activated protein kinase and is cell-line specificMol. Pharmacol.62660671CrossRefPubMedGoogle Scholar
  39. 39.
    Yan, H., Lu, D., Rivkees, S. A. 2003Lysophosphatidic acid regulates the proliferation and migration of olfactory ensheathing cells in vitroGlia442636CrossRefPubMedGoogle Scholar
  40. 40.
    Traverse, S., Gomez, N., Paterson, H., Marshall, C., Cohen, P. 1992Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factorBiochem. J.288 351355PubMedGoogle Scholar
  41. 41.
    Karin, M., Hunter, T. 1995Transcriptional control by protein phosphorylation: signal transmission from the cell surface to the nucleusCurr. Biol.5747757PubMedGoogle Scholar
  42. 42.
    Brunet, A., Roux, D., Lenormand, P., Dowd, S., Keyse, S., Pouyssegur, J. 1999Nuclear translocation of p42/p44 mitogen-activated protein kinase is required for growth factor-induced gene expression and cell cycle entryEMBO J.18664674CrossRefPubMedGoogle Scholar
  43. 43.
    Kranenburg, O., Moolenaar, W. H. 2001Ras-MAP kinase signaling by lysophosphatidic acid and other G protein-coupled receptor agonistsOncogene2015401546CrossRefPubMedGoogle Scholar
  44. 44.
    Liu, Y., Suzuki, Y. J., Day, R. M., Fanburg, B. L. 2004Rho kinase-induced nuclear translocation of ERK1/ERK2 in smooth muscle cell mitogenesis caused by serotoninCirc. Res.95579586CrossRefPubMedGoogle Scholar
  45. 45.
    Lee, C. W., Nam, J. S., Park, Y. K., Choi, H. K., Lee, J. H., Kim, N. H., Cho, J., Song, D. K., Suh, H. W., Lee, J., Kim, Y. H., Huh, S. O. 2003Lysophosphatidic acid stimulates CREB through mitogen- and stress-activated protein kinase-1Biochem. Biophys. Res. Commun.305455461CrossRefPubMedGoogle Scholar
  46. 46.
    Deak, M., Clifton, A. D., Lucocq, L. M., Alessi, D. R. 1998Mitogen- and stress-activated protein kinase-1 (MSK1) is directly activated by MAPK and SAPK2/p38, and may mediate activation of CREBEMBO J.1744264441CrossRefPubMedGoogle Scholar
  47. 47.
    Xing, J., Ginty, D. D., Greenberg, M. E. 1996Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinaseScience273959963PubMedGoogle Scholar
  48. 48.
    Chen, R. H., Sarnecki, C., Blenis, J. 1992Nuclear localization and regulation of erk- and rsk-encoded protein kinasesMol. Cell Biol.12915927PubMedGoogle Scholar
  49. 49.
    Bar-Sagi, D., Hall, A. 2000Ras and Rho GTPases: a family reunionCell103227238CrossRefPubMedGoogle Scholar
  50. 50.
    Takahashi, E., Abe, J., Gallis, B., Aebersold, R., Spring, D. J., Krebs, E. G., Berk, B. C. 1999p90rsk is a serum stimulated Na+/H+ exchanger isoform-1 kinase. Regulatory phos- phorylation of serine 703 of Na+/H+ exchanger isoform-1 J. Biol. Chem.2742020620214CrossRefPubMedGoogle Scholar
  51. 51.
    Tominaga, T., Ishizaka, T., Narumiya, S., Barber, D. L. 1998p160ROCK mediates RhoA activation of Na-H exchangeEMBO J.1747124722CrossRefPubMedGoogle Scholar
  52. 52.
    Frodin, M., Gammeltoft, S. 1999Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transductionMol. Cell Endocrinol.1516577CrossRefPubMedGoogle Scholar
  53. 53.
    Mukhin, Y. V., Garnovskaya, M. N., Ullian, M. E., Raymond, J. R 2004ERK is regulated by sodium-proton exchanger in rat aortic vascular smooth muscle cellsJ. Biol. Chem.27918451852CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Sirlene R. Cechin
    • 1
    • 2
  • Peter R. Dunkley
    • 1
  • Richard Rodnight
    • 1
    • 2
    • 3
    Email author
  1. 1.School of Biomedical Sciences and the Hunter Medical Research InstituteUniversity of NewcastleCallaghanAustralia
  2. 2.Departamento de BioquímicaICBS, UFRGSPorto AlegreBrazil
  3. 3.School of Biomedical Science, Medical Sciences BuildingUniversity of NewcastleCallaghanAustralia

Personalised recommendations