Neurochemical Research

, Volume 30, Issue 3, pp 403–410 | Cite as

Neuroprotective Effects of Ebselen on Experimental Spinal Cord Injury in Rats

  • Murat Kalayci
  • Omer Coskun
  • Ferda Cagavi
  • Mehmet Kanter
  • Ferah Armutcu
  • Sanser Gul
  • Bektas Acikgoz


Spinal cord injury (SCI) results in rapid and significant oxidative stress. This study was aimed to investigate the possible beneficial effects of Ebselen in comparison with Methylprednisolone in experimental SCI. Thirty six Wistar albino rats (200–250 g) were divided in to six groups; A (control), B (only laminectomy), C (Trauma; laminectomy  + spinal trauma), D (Placebo group; laminectomy  + spinal trauma + serum physiologic), E (Methylprednisolone group; laminectomy  + spinal trauma + Methylprednisolone treated), F (Ebselen group; laminectomy  + spinal trauma + Ebselen treated), containing 6 rats each. Spinal cord injury (SCI) was performed by placement of an aneurysm clip, extradurally at the level of T11–12. After this application, group A, B and C were not treated with any drug. Group D received 1 ml serum physiologic. Group E received 30 mg/kg Methylprednisolone and, Group F received 10 mg/kg Ebselen intraperitoneally (i.p.). Rats were neurologically examined 24 h after trauma and spinal cord tissue samples had been harvested for both biochemical and histopathological evaluation. All rats were paraplegic after SCI except the ones in group A and B. Neurological scores were not different in traumatized rats than that of non-traumatized ones. SCI significantly increased spinal cord tissue malondialdehyde (MDA) and protein carbonyl (PC) levels and also decreased superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) enzyme activities compared to control. Methylprednisolone and Ebselen treatment decreased tissue MDA and PC levels and prevented inhibition of the enzymes SOD, GSH-Px and CAT in the tissues. However, the best results were obtained with Ebselen. In groups C and D, the neurons of the spinal cord tissue became extensively dark and degenerated with picnotic nuclei. The morphology of neurons in groups E and F were very well protected, but not as good as the control group. The number of neurons in the spinal cord tissues of the groups C and D were significantly less than the groups A, B, E and F. We concluded that the use of Ebselen treatment might have potential benefits in spinal cord tissue damage on clinical grounds.


Ebselen methylprednisolone lipid peroxidation anti-oxidant enzymes rat spinal cord injury 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R., Young, W., Baskin, D. S., Eisenberg, H. M, Flamm, E., Leo-Summers, L., Maroon, J.,  et al. 1990A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury. Results of the Second National Acute Spinal Cord Injury StudyN. Engl. J. Med.32214051411PubMedGoogle Scholar
  2. 2.
    Bracken, M. B., Shepard, M. J., Collins, W. F., Holford, T. R, Baskin, D. S., Eisenberg, H. M., Flamm, E., Leo-Summers, L., Maroon, J. C., Marshall, L. F.,  et al. 1992Methylprednisolone or naloxone treatment after acute spinal cord injury: one-year follow-up data. Results of the Second National Acute Spinal Cord Injury StudyJ. Neurosurg.762331PubMedGoogle Scholar
  3. 3.
    Anderson, D. K., Hall, E. D. 1993Pathophysiology of spinal cord traumaAnn. Emerg. Med.22987992PubMedGoogle Scholar
  4. 4.
    Tator, C. H. 1998Biology of neurological recovery and functional restoration after spinal cord injuryNeurosurgery42696708PubMedGoogle Scholar
  5. 5.
    Maiorino, M., Roveri, A., Coassin, M., Ursini, F. 1988Kinetic mechanism and substrate specificity of glutathione peroxidase activity of ebselen (PZ51)Biochem. Pharmacol.3722672271PubMedGoogle Scholar
  6. 6.
    Muller, A., Cadenas, E., Graf, P., Sies, H. 1984A novel biologically active seleno-organic compound I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen)Biochem. Pharmacol.3332353239PubMedGoogle Scholar
  7. 7.
    Malecki, A., Garrido, R., Mattson, M. P., Henning, B., Toborek, M. 20004-hydroxynonenal induces oxidative stress and death of cultured spinal cord neuronsJ. Neurochem.7422782287PubMedGoogle Scholar
  8. 8.
    Takasago, T., Peters, E. E., Graham, D. I., Masayasu, H., Macrae, I. M. 1997Neuroprotective efficacy of ebselen an antioxidant with anti-inflammatory actions, in a rodent model of permanent middle cerebral artery occlusionBr. J. Pharmacol.12212511256PubMedGoogle Scholar
  9. 9.
    Yamaguchi, T., Sano, K., Takakura, K., Saito, I., Shinohara, Y., Asano, T., Yasuhara, H. 1998Ebselen in acute ischemic stroke: a placebo-controlled, double-blind clinical trialStroke291217PubMedGoogle Scholar
  10. 10.
    Saito, I., Asano, T., Sano, K., Takakura, K., Abe, H., Yoshimoto, T., Kikuchi, H., Ohta, T., Ishibashi, S. 1998Neuroprotective effect of an antioxidant, ebselen, in patients with delayed neurological deficits after aneurysmal subarachnoid hemorrhageNeurosurgery42269278PubMedGoogle Scholar
  11. 11.
    Rivlin, A. S., Tator, C. H. 1978Effect of duration of acute spinal cord compression in a new acute cord injury model in the ratSurg. Neurol.103943Google Scholar
  12. 12.
    Rivlin, A. S., Tator, C. H. 1977Objective clinical assessment of motor function after experimental spinal cord injury in the ratJ. Neurosurg.47577581PubMedGoogle Scholar
  13. 13.
    Lowry, O. H., Rosebrough, N. J., Randall, R. J. 1951Protein measurement with the Folin phenol reagentJ. Biol. Chem.193265275PubMedGoogle Scholar
  14. 14.
    Draper, H. H., Hadley, M. 1990Malondialdehyde determination as index of lipid peroxidationMethods Enzymol.186421431PubMedGoogle Scholar
  15. 15.
    Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., Stadtman, E. R. 1990Determination of carbonyl content in oxidatively modified proteinsMethods Enzymol.186464478PubMedGoogle Scholar
  16. 16.
    Sun, Y., Oberley, L. W., Li, Y. 1988A simple method for clinical assay of superoxide dismutaseClin. Chem.34 497500PubMedGoogle Scholar
  17. 17.
    Aebi, H. 1974CatalaseBergmeyer, H. U. eds. Methods of enzymatic analysisAcademic PressNew York673677Google Scholar
  18. 18.
    Paglia, D. E., Valentine, W. N. 1967Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidaseJ. Lab. Clin. Med.70158169PubMedGoogle Scholar
  19. 19.
    Faden, A. I., Chan, P. H., Longar, S. 1987Alterations in lipid metabolism, Na+,K+-ATPase activity, and tissue water content of spinal cord following experimental traumatic injuryJ. Neurochem.4818091816PubMedGoogle Scholar
  20. 20.
    Iwasa, K., Ikata, T., Fukuzawa, K. 1989Protective effect of vitamin E on spinal cord injury by compression and concurrent lipid peroxidationFree. Radic. Biol. Med.6599606PubMedGoogle Scholar
  21. 21.
    Liu, D., Yang, R., Yan, X., McAdoo, D. J. 1994Hydroxyl radicals generated in vivo kill neurons in the rat spinal cord: Electrophysiological, histological, and neurochemical resultsJ. Neurochem.623744PubMedGoogle Scholar
  22. 22.
    Agrawal, S. K., Fehlings, M. G. 1997Role of NMDA and non-NMDA ionotropic glutamate receptors in traumatic spinal cord axonal injuryJ. Neurosci.1710551063PubMedGoogle Scholar
  23. 23.
    Taoka, Y., Okajima, K. 1998Spinal cord injury in the ratProg. Neurobiol.55118PubMedGoogle Scholar
  24. 24.
    Means, E. D., Anderson, D. K. 1983Neuronophagia by leukocytes in experimental spinal cord injuryJ. Neuropathol. Exp. Neurol.42707719PubMedGoogle Scholar
  25. 25.
    Reiter, R. J., Tan, D. X., Allegra, M. 2002Melatonin: Reducing molecular pathology and dysfunction due to free radicals and associated reactantsNeuro. Endocrinol. Lett. Suppl.138Google Scholar
  26. 26.
    Konat, G. W., Wiggins, R. C. 1985Effect of reactive oxygen species on myelin membrane proteinsJ. Neurochem.4511131118PubMedGoogle Scholar
  27. 27.
    Kaptanoglu, E., Tuncel, M., Palaoglu, S., Konan, A., Demirpence, E., Kilinc, K. 2000Comparison of the effects of melatonin and methylprednisolone in experimental spinal cord injuryJ. Neurosurg. Spine937784Google Scholar
  28. 28.
    Hall, E. D. 1993Lipid antioxidants in acute central nervous system injuryAnn. Emerg. Med.2210221027PubMedGoogle Scholar
  29. 29.
    Saunders, R. D., Dugan, L. L., Demediuk, P., Means, E. D., Horrocks, L. A., Anderson, D. K. 1987Effects of methylprednisolone and the combination of alpha-tocopherol and selenium on arachidonic acid metabolism and lipid peroxidation in traumatized spinal cord tissueJ. Neurochem.492431PubMedGoogle Scholar
  30. 30.
    Demopoulos, H. B., Flamm, E. S., Pietonigro, D. D., Seligman, M. L. 1980The free radical pathology and the microcirculation in the major central nervous system disordersActa. Physiol. Scand. Suppl.49291119PubMedGoogle Scholar
  31. 31.
    Benzel, E. C. 1990A new rat spinal cord injury model. A ventral compression techniqueJ Spinal Disorders4334338Google Scholar
  32. 32.
    Means, E. D., Anderson, D. K., Waters, T. R., Kalaf, L. 1981Effect of methylprednisolone in compression trauma to the feline spinal cordJ. Neurosurg.55200208PubMedGoogle Scholar
  33. 33.
    Wendel, A., Fausel, M., Safayhi, H., Tiegs, G., Otter, R. 1984A novel biologically active seleno-organic compound, II: activity of PZ51 in relation to glutathione peroxidaseBiochem. Pharmacol.3332413245PubMedGoogle Scholar
  34. 34.
    Nogueira, C. W., Rotta, L. N., Zeni, G., Souza, D. O., Rocha, J. B. 2002Exposure to ebselen changes glutamate uptake and release by rat brain synaptosomesNeurochem. Res.27283288PubMedGoogle Scholar
  35. 35.
    Muller, A., Gabriel, H., Sies, H. 1985A novel biologically active selenoorganic compound, IV: Protective glutathione-dependent effect of PZ 51 (ebselen) against ADP-Fe induced lipid peroxidation in isoleted hepatocytesBiochem. Pharmacol.3411851189PubMedGoogle Scholar
  36. 36.
    Safayhi, H., Tiegs, G., Wendel, A. 1985A novel biologically active selenoorganic compound, V: inhibition by ebselen (PZ 51) on rat peritoneal neutrophil lipoxygenaseBiochem. Pharmacol.3426912694PubMedGoogle Scholar
  37. 37.
    Ullrich, V., Weber, P., Meisch, F., Appen, F. 1996Ebselen-binding equilibria between plasma and target proteinsBiochem. Pharmacol.521519PubMedGoogle Scholar
  38. 38.
    Ichikawa, S., Omura, K., Katayama, T., Okamura, N., Ohtsuka, T., Ishibashi, S., Masayasu, H. 1987Inhibition of superoxide anion production in guinea pig polymorphonuclear leukocytes by a seleno-organic compound, ebselenJ. Pharmacobio. Dyn.10595597PubMedGoogle Scholar
  39. 39.
    Hattori, R., Inoue, R., Sase, K., Eizawa, H., Kosuga, K., Aoyama, T., Masayasu, H., Kawai, C., Sasayama, S., Yui, Y. 1994Preferential inhibition of inducible nitric oxide synthase by ebselenEur. J. Pharmacol.267R1R2Google Scholar
  40. 40.
    Masumoto, H., Sies, H. 1996The reaction of ebselen with peroxynitriteChem. Res. Toxicol.9262267PubMedGoogle Scholar
  41. 41.
    Moussaoui, S., Obinu, M. C., Daniel, N., Reibaud, M., Blandchard, V., Imperato, A., Moussaoui, S., Obinu, M. C., Daniel, N., Reibaud, M., Blandchard, V., Imperato, A. 2000The antioxidant ebselen prevents neurotoxicity and clinical symptoms in a primate model of Parkinson’s diseaseExp. Neurol.166235245PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Murat Kalayci
    • 1
  • Omer Coskun
    • 2
    • 4
  • Ferda Cagavi
    • 1
  • Mehmet Kanter
    • 2
  • Ferah Armutcu
    • 3
  • Sanser Gul
    • 1
  • Bektas Acikgoz
    • 1
  1. 1.Faculty of Medicine, Department of NeurosurgeryZonguldak Karaelmas UniversityZonguldakTurkey
  2. 2.Faculty of Medicine, Department of Histology and Embriyology EdirneTrakya UniversityTurkey
  3. 3.Faculty of Medicine, Department of BiochemistryZonguldak Karaelmas University ZonguldakTurkey
  4. 4.Tarkya UniversityEdrineTurkey

Personalised recommendations