Neurochemical Research

, Volume 30, Issue 3, pp 291–295

Accumulation of Acrolein–Protein Adducts after Traumatic Spinal Cord Injury

Article

Abstract

Reactive oxygen species and resultant lipid peroxidation (LPO) have been associated with central nervous system trauma. Acrolein (2-propenal) and 4-hydroxynonenal (HNE) are the most toxic byproducts of LPO, with detrimental effects in various types of cells. In this study, we used immunoblotting techniques to detect the accumulation of protein-bound acrolein and HNE. We report that protein-bound acrolein and HNE were significantly increased in guinea pig spinal cord following a controlled compression injury. The acrolein and HNE protein-adducts increased in the damaged spinal cord as early as 4 h after injury, reached a peak at 24 h after injury, and remained at a significantly high level up to 7 days after injury. Such increase of protein adducts was also observed in the adjacent segments of the injury site beginning at 24 h post injury. These results suggest that products of lipid peroxidation, especially acrolein, may play a critical role in the secondary neuronal degeneration, which follows mechanical insults.

Keywords

2-Propenal 4-hydroxynonenal lipid peroxidation spinal cord injury immunoblotting densitometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hall, E. D. 1993Lipid antioxidants in acute central nervous system injuryAnn. Emerg. Med2210221007PubMedGoogle Scholar
  2. 2.
    Lewen, A., Matz, P., Chan, P. H. 2000Free radical pathways in CNS injuryJ Neurotrauma17871890PubMedGoogle Scholar
  3. 3.
    Povlishock, J. T., Kontos, H. A. 1992The role of oxygen radicals in the pathobiology of traumatic brain injuryHuman Cell5345353PubMedGoogle Scholar
  4. 4.
    Esterbauer, H., Schaur, R. J., Zollner, H. 1991Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydesFree Rad. Biol. Med1181128PubMedGoogle Scholar
  5. 5.
    Kehrer, J. P., Biswal, S. S. 2000The molecular effects of acroleinToxicol. Sci57615PubMedGoogle Scholar
  6. 6.
    Uchida, K. 20034-Hydroxy-2-nonenal: a product and mediator of oxidative stressProg. Lipid Res42318343PubMedGoogle Scholar
  7. 7.
    Luo, J., Shi, R. 2004Acrolein induces axolemmal disruption, oxidative stress, and mitochondrial impairment in spinal cord tissueNeurochem. Int44475486PubMedGoogle Scholar
  8. 8.
    Baldwin, S. A., Broderick, R., Osbourne, D., Waeg, G., Blades, D. A., Scheff, S. W. 1998The presence of 4-hydroxynonenal/protein complex as an indicator of oxidative stress after experimental spinal cord contusion in a ratJ. Neurosurg88874883PubMedGoogle Scholar
  9. 9.
    Springer, J. E., Azbill, R. D., Mark, R. J., Begley, J. G., Waeg, G., Mattson, M. P. 19974-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptakeJ. Neurochem6824692476PubMedGoogle Scholar
  10. 10.
    Shi, R., Luo, J., Peasley, M. A. 2002Acrolein inflicts axonal membrane disruption and conduction loss in isolated guinea pig spinal cordNeuroscience115337340PubMedGoogle Scholar
  11. 11.
    Peasley, M. A., Shi, R. 2003Ischemic insult exacerbates acrolein-induced conduction loss and axonal membrane disruption in guinea pig spinal cord white matterJ. Neurol. Sci2162332PubMedGoogle Scholar
  12. 12.
    Markesbery, W. R., Lovell, M. A. 1998Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s diseaseNeurobiol. Aging193336PubMedGoogle Scholar
  13. 13.
    Lovell, M. A., Xie, C. and Markesbery, W. R. 2001. Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol. Aging 187–194.Google Scholar
  14. 14.
    Calingasan, N. Y., Uchida, K., Gibson, G. E. 1999Protein-bound acrolein: a novel marker of oxidative stress in Alzheimer’s diseaseJ. Neurochem72751756PubMedGoogle Scholar
  15. 15.
    Uchida, K., Kanematsu, M., Sakai, K., Matsuda, T., Hattori, N., Mizuno, Y., Suzuki, D., Miyata, T., Noguchi, N.,  et al. 1998Protein-bound acrolein: potential markers for oxidative stressProc. Nat. Aca. Sci. USA9548824887Google Scholar
  16. 16.
    Uchida, K., Kanematsu, M., Morimitsu, Y., Osawa, T., Noguchi, N., Niki, E 1998Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteinsJ. Biol. Chem2731605816066PubMedGoogle Scholar
  17. 17.
    Borgens, R. B., Shi, R. 2000Immediate recovery from spinal cord injury through molecular repair of nerve membranes with polyethylene glycolFASEB J142735PubMedGoogle Scholar
  18. 18.
    Borgens, R. B., Shi, R., Bohnert, D. 2002Behavioral recovery from spinal cord injury following delayed application of polyethylene glycolJ. Exp. Biol205112PubMedGoogle Scholar
  19. 19.
    Uchida, K., Stadtman, E. R. 2000Quantitation of 4-hydroxynonenal protein adductsMethods Mol. Biol992534PubMedGoogle Scholar
  20. 20.
    Ghilarducci, D. P., Tjeerdema, R. S. 1995Fate and effects of acrolein RevEnviron. Contam. Toxicol14495146Google Scholar
  21. 21.
    Fridovich, I. 1978The biology of oxygen radicalsScience201875880PubMedGoogle Scholar
  22. 22.
    Shi, R. 2004The danamics of axolemal disruption in guinea pig spinal cord following compressionJ. Neurocytology33203211Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  1. 1.Department of Basic Medical Sciences, Institute for Applied Neurology, Center for Paralysis ResearchPurdue UniversityWest LafayetteUSA
  2. 2.Laboratory of Food and Biodynamics Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan

Personalised recommendations