Neurochemical Research

, Volume 30, Issue 1, pp 105–111 | Cite as

Repeated Restraint Stress Induces Oxidative Damage in Rat Hippocampus

  • Fernanda U. Fontella
  • Ionara R. Siqueira
  • Ana Paula S. Vasconcellos
  • Angela S. Tabajara
  • Carlos A. Netto
  • Carla Dalmaz


It has been shown that emotional stress may induce oxidative damage, and considerably change the balance between pro-oxidant and antioxidant factors in the brain. The aim of this study was to verify the effect of repeated restraint stress (RRS; 1 h/day during 40 days) on several parameters of oxidative stress in the hippocampus of adult Wistar rats. We evaluated the lipid peroxide levels (assessed by TBARS levels), the production of free radicals (evaluated by the DCF test), the total radical-trapping potential (TRAP) and the total antioxidant reactivity (TAR) levels, and antioxidant enzyme activities (SOD, GPx and CAT) in hippocampus of rats. The results showed that RRS induced an increase in TBARS levels and in GPx activity, while TAR was reduced. We concluded that RRS induces oxidative stress in the rat hippocampus, and that these alterations may contribute to the deleterious effects observed after prolonged stress.


Antioxidants chronic stress free radicals Glutathione peroxidase lipoperoxidation ROS total antioxidant reactivity 


  1. McIntosh, L., Sapolsky, R. 1996Glucocorticoids increase the accumulation of reactive oxygen species and enhance adriamycin-induce toxicity in neuronal cultureExp. Neurol.141201206CrossRefGoogle Scholar
  2. Cochrane, C. 1991Mechanisms of oxidant injury of cellsMol. Aspects Med.12137147CrossRefGoogle Scholar
  3. Liu, J., Wang, X., Mori, A. 1994Immobilization stress-induced antioxidant defense changes in rat plasma: effect of treatment with reduced glutathioneInt. J. Biochem.26511517CrossRefGoogle Scholar
  4. Manoli, L., Gamaro, G. D., Silveira, P. P., Dalmaz, C. 2000Effect of chronic variate stress on thiobarbituric-acid reactive species and on total radical-trapping potential in distinct regions of rat brainNeurochem. Res.25915921CrossRefGoogle Scholar
  5. Sosnovsky, A. S., Kozlov, A. V. 1992Increased lipid peroxidation in the rat hypothalamus after short-term emotional stressBiull. Eksp. Biol. Med.113486488CrossRefGoogle Scholar
  6. Anderson, D. K., Saunders, R. D., Demediuk, P., Dugan, L. L., Raughler, J. M., Hall, E. D., Means, E. D., Horrocks, L. A. 1985Lipid hydrolysis and peroxidation in injured spinal cord: partial protection with methylprednisolone or vitamin E and seleniumCent. Nerv. Syst. Trauma2257267Google Scholar
  7. Metodiewa, D., Koska, C. 2000Reactive oxygen species and reactive nitrogen species: relevance to cyto(neuro)toxic events and neurologic disordersAn overview. Neurotox. Res.1197233Google Scholar
  8. Sandhir, R., Julka, D., Dip, G. K. 1994Lipoperoxidative damage on lead exposure in rat brain and its implications on membrane bound enzymesPharmacol. Toxicol.746671Google Scholar
  9. Bondy, S. C. 1992Reactive oxygen species: relation to aging and neurotoxic damageNeurotoxicology1387100Google Scholar
  10. Halliwell, B., Cross, C. E. 1994Oxygen-derived species: their relation to human disease and environmental stressEnviron. Health Perspect.102512Google Scholar
  11. Kehrer, J. P. 2000The Haber-Weiss reaction and mechanisms of toxicityToxicology1494350CrossRefGoogle Scholar
  12. McIntosh, L. J., Cortopassi, K. M., Sapolsky, R. M. 1998aGlucocorticoids may alter antioxidant enzyme capacity in the brain: kainic acid studiesBrain Res.791215222CrossRefGoogle Scholar
  13. McIntosh, L. J., Hong, K. E., Sapolsky, R. M. 1998bGlucocorticoids may alter antioxidant enzyme capacity in the brain: baseline studiesBrain Res.791209214CrossRefGoogle Scholar
  14. Ely, D. R., Dapper, V., Marasca, J., Corrêa, J. B., Gamaro, G. D., Xavier, M. H., Michalowski, M. B., Catelli, D., Rosat, R., Ferreira, M. B. C., Dalmaz, C. 1997Effect of restraint stress on feeding behavior of ratsPhysiol. Behav.61395398CrossRefGoogle Scholar
  15. Wang, H., Joseph, J. A. 1999Quantifying cellular oxidative stress by a dichlorofluorescein assay using microplate readerFree Radic. Biol. Med.27612616CrossRefGoogle Scholar
  16. Driver, A. S., Kodavanti, P. R. S., Mundy, W. R. 2000Age-related in reactive oxygen species production in rat brain homogenatesNeurotoxicol. Teratol.22175181CrossRefGoogle Scholar
  17. Buege, J. A., Aust, S. D. 1987Microssomal lipid peroxidationMeth. Enzymol.52302310Google Scholar
  18. Yagi, K. 1998. Simple assay for the level of total lipid peroxides in serum or plasma. In Armstrong, D. (ed.), Methods in Molecular Biology, Vol. 108: Free Radical and Antioxidant Protocols, Humana Press Inc, Totowa, NJ, pp. 101–106.Google Scholar
  19. Evelson, P., Travacio, M., Repetto, M., Escobar, J., Llesuy, S., Lissi, E. A. 2001Evaluation of total reactive antioxidant potential (TRAP) of tissue homogenates and their cytosolsArch. Biochem. Biophys.388261266CrossRefGoogle Scholar
  20. Lissi, E., Pascual, C., del Castillo, M. D. 1992Luminol luminescence induced by 2,2′-azo-bis(2-amidinopropane) thermolysisFree Radic. Res. Commun.17299311Google Scholar
  21. Lissi, E., Salim-Hanna, M., Pascual, C., del Castillo, M. D. 1995Evaluation of total antioxidant potential (TRAP) and total antioxidant reactivity from luminol-enhanced chemiluminescence measurementsFree Radic. Biol. Med.18153158CrossRefGoogle Scholar
  22. Delmas-Beauvieux, M. C., Peuchant, E., Dumon, M. F., Receveur, M. C., Le Bras, M., Clerc, M. 1995Relationship between red blood cell antioxidant enzymatic system status and lipoperoxidation during the acute phase of malariaClin. Biochem.28163169CrossRefGoogle Scholar
  23. Aebi, H. 1984Catalase in vitroMeth. Enzymol.105121126Google Scholar
  24. Wendel, A. 1981Glutathione peroxidaseMeth. Enzymol.77325333Google Scholar
  25. Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J. 1951Protein measurement with the Folin phenol reagentJ. Biol. Chem.193265275PubMedGoogle Scholar
  26. Oishi, K., Yokoi, M., Maekawa, S., Sodeyama, C., Shiraishi, T., Kondo, R., Kuriyama, T., Machida, K. 1999Oxidative stress and haematological changes in immobilized ratsActa Physiol. Scand.1656569CrossRefGoogle Scholar
  27. Liu, J., Wang, X., Shigenaga, M. K., Yeo, H. C., Mori, A., Ames, B. N. 1996Immobilization stress causes oxidative damage to lipid, protein, and DNA in the brain of ratsFASEB J.1015321538Google Scholar
  28. Abraham, I. M., Harkany, T., Horvath, K. M., Luiten, P. G. 2001Action of glucocorticoids on survival of nerve cells: promoting neurodegeneration or neuroprotection?Neuroendocrinology13749760Google Scholar
  29. Patel, R., McIntosh, L., McLaughlin, J., Brooke, S., Nimon, V., Sapolsky, R. 2002Disruptive effects of glucocorticoids on glutathione peroxidase biochemistry in hippocampal culturesJ. Neurochem.82118125CrossRefGoogle Scholar
  30. Bodnoff, S. R., Humphreys, A. G., Lehman, J. C., Diamond, D. M., Rose, G. M., Meaney, M. J. 1995Enduring effects of chronic corticosterone treatment on spatial learning, synaptic plasticity, and hippocampal neuropathology in young and mid-aged ratsJ. Neurosci.156169Google Scholar
  31. Nishimura, J. I., Endo, Y., Kimura, F. 1999A long term stress exposure impairs maze learning performance in ratsNeurosci. Lett.273125128CrossRefGoogle Scholar
  32. Conrad, C. D., Galea, L. A., Kuroda, Y., McEwen, B. S. 1996Chronic stress impairs rat spatial memory on the Y maze, and this effect is blocked by tianeptine pretreatmentBehav. Neurosci.110132134CrossRefGoogle Scholar
  33. McLay, R. N., Freeman, S. M., Zadina, J. E. 1998Chronic corticosterone impairs memory performance in the Barnes MazePhysiol. Behav.63933937CrossRefGoogle Scholar
  34. Nichols, R. M., Zieba, M., Bye, N. 2001Do glucocorticoids contribute to brain aging?Brain Res. Rev.37273286CrossRefGoogle Scholar
  35. Torres, I. L., Gamaro, G. D., Silveira-Cucco, S. N., Michalowski, M. B., Correa, J. B., Perry, M. L., Dalmaz, C. 2001Effect of acute and repeated restraint stress on glucose oxidation to CO2 in hippocampal and cerebral cortex slicesBraz. J. Med. Biol. Res.34111116Google Scholar
  36. Gilberti, E. A., Trombetta, L. D. 2000The relationship between stress protein induction and the oxidative defense system in the rat hippocampus following kainic acid administrationToxicol. Lett.1161726CrossRefGoogle Scholar
  37. Meister, A. 1988Glutathione metabolism and its selective modificationJ. Biol. Chem.2631720517208Google Scholar
  38. Voehringer, D. W. 1999BCL-2 and gluthatione: alterations in cellular redox state that regulate apoptosis sensitivityFree Radic. Biol. Med.27945950CrossRefGoogle Scholar
  39. Saija, A., Princi, P., Pisani, A., Lanza, M., Scalese, M., Aramnejad, E., Ceserani, R., Costa, G. 1994Protective effect of glutathione on kainic acid-induced neuropathological changes in the rat brainGen. Pharmacol.2597102Google Scholar
  40. Trotti, D., Rizzini, B. L., Rossi, D., Haugueto, O., Racagni, G., Danbolt, N. C., Volterra, A. 1997Neuronal and glial glutamate transporters possess na SH-based redox regulatory mechanismEur. J. Neurosci.912361243Google Scholar
  41. Trotti, D., Danbolt, N. C., Volterra, A. 1998Glutamate transporters are oxidant-vulnerable: a molecular link between oxidative and excitotoxic neurodegeneration?Trends Pharmacol. Sci.19328334CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Fernanda U. Fontella
    • 1
  • Ionara R. Siqueira
    • 1
  • Ana Paula S. Vasconcellos
    • 2
  • Angela S. Tabajara
    • 2
  • Carlos A. Netto
    • 2
  • Carla Dalmaz
    • 2
    • 3
  1. 1.Departamento de Bioquimica. Instituto de Ciências Basicas da SaudeUFRGSPorto AlegreBrazil
  2. 2.Departamento de Fisiologia. Instituto de Ciências Basicas da SaudeUFRGSPorto AlegreBrazil
  3. 3.Departamento de Bioquimica, Instituto de Ciências Basicas da SaudeUFRGSPorto AlegreBrazil

Personalised recommendations