Neurochemical Research

, Volume 30, Issue 2, pp 225–235

Krebs Cycle Intermediates Modulate Thiobarbituric Acid Reactive Species (TBARS) Production in Rat Brain In Vitro

  • Robson L. Puntel
  • Cristina W. Nogueira
  • João B. T. Rocha
Article

Abstract

The aim of this study was to investigate the effect of Krebs cycle intermediates on basal and quinolinic acid (QA)- or iron-induced TBARS production in brain membranes. Oxaloacetate, citrate, succinate and malate reduced significantly the basal and QA-induced TBARS production. The potency for basal TBARS inhibition was in the order (IC50 is given in parenthesis as mM) citrate (0.37) > oxaloacetate (1.33) = succinate (1.91) >> malate (12.74). α-Ketoglutarate caused an increase in TBARS production without modifying the QA-induced TBARS production. Cyanide (CN) did not modify the basal or QA-induced TBARS production; however, CN abolished the antioxidant effects of succinate. QA-induced TBARS production was enhanced by iron ions, and abolished by desferrioxamine (DFO). The intermediates used in this study, except for α-ketoglutarate, prevented iron-induced TBARS production. Oxaloacetate, citrate, α-ketoglutarate and malate, but no succinate and QA, exhibited significantly iron-chelating properties. Only α-ketoglutarate and oxaloacetate protected against hydrogen peroxide-induced deoxyribose degradation, while succinate and malate showed a modest effect against Fe2+/H2O2-induced deoxyribose degradation. Using heat-treated preparations citrate, malate and oxaloacetate protected against basal or QA-induced TBARS production, whereas α-ketoglutarate induced TBARS production. Succinate did not offer protection against basal or QA-induced TBARS production. These results suggest that oxaloacetate, malate, succinate, and citrate are effective antioxidants against basal and iron or QA-induced TBARS production, while α-ketoglutarate stimulates TBARS production. The mechanism through which Krebs cycle intermediates offer protection against TBARS production is distinct depending on the intermediate used. Thus, under pathological conditions such as ischemia, where citrate concentrations vary it can assume an important role as a modulator of oxidative stress associated with such situations.

Keywords

Krebs cycle intermediates lipid peroxidation quinolinic acid iron antioxidant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sokolowska, M., Oleszek, A., Wodek, L. 1999Protective effect of alpha-ketoacids on the oxidative hemolysisPol. J. Pharmacol51429434Google Scholar
  2. 2.
    Desagher, S., Glowinski, J., Premont, J. 1997Pyruvate protects neurons against hydrogen peroxide-induced toxicityJ. Neurosci1790609067Google Scholar
  3. 3.
    Velvizhi, S., Dakshayani, K. B., Subramanian, P. 2002Effects of α-ketoglutarate on antioxidants and lipid peroxidation products in rats treated with ammonium acetateNutrition18747750Google Scholar
  4. 4.
    Velvizhi, S., Nagalashmi, T., Mohamed Essa, M., Dakshayani, K. B., Subramanian, P. 2002Effects of α-ketoglutarate on lipid peroxidation and antioxidant status during chronic ethanol administration in Wistar ratsPol. J. Pharmacol54231236Google Scholar
  5. 5.
    Yamamoto, H., Mohanan, P. V. 2003Effect of α-ketoglutarate and oxaloacetate on brain mitochondrial DNA damage and seizures induced by kainic acid in miceToxicol. Lett143115122Google Scholar
  6. 6.
    Mallet, R. T., Sun, J. 2003Antioxidant properties of myocardial fuelsMol. Cell. Biochem253103111Google Scholar
  7. 7.
    Mallet, R. T. 2000Pyruvate: Metabolic protector of cardiac performanceProc. Soc. Exp. Biol. Med223136148Google Scholar
  8. 8.
    Mallet, R. T., Sun, J. 1999Mitochondrial metabolism of pyruvate is required for its enhancement of cardiac function and energeticsCardiovasc. Res42149161Google Scholar
  9. 9.
    Baker, M. S., Gebicki, J. M. 1986The effect of pH on yields of hydroxyl radicals produced from superoxide by potential biological iron chelatorsArch. Biochem. Biophys246581588Google Scholar
  10. 10.
    Abrahamson, H. B., Rezvani, A. B., Brushmiller, G. 1994Photochemical and spectroscopic studies of complexes of iron (III) with citric acid and other carboxylic acidsInorg. Chimica Acta226117127Google Scholar
  11. 11.
    Chiueh, C. O., Miyake, H., Peng, M. T. 1993Role of dopamine autoxidation, hydroxyl radical generation, and calcium overload in underlying mechanisms involved in MPTP-induced parkinsonismAdv. Neurol60251258Google Scholar
  12. 12.
    Gutteridge, J. M. 1994Hydroxyl radicals, iron, oxidative stress, and neurodegenerationAnn. NY Acad. Sci738201213Google Scholar
  13. 13.
    Takayanagi, R., Takeshige, K., Minakami, S. 1980NADH- and NADPH-dependent lipid peroxidation in bovine heart submitochondrial particles. Dependence on the rate of electron flow in the respiratory chain and an antioxidant roleBiochem. J192853860Google Scholar
  14. 14.
    Bindoli, A., Cavallini, L., Jocelyn, P. 1982Mitochondrial lipid peroxidation by cumene hydroperoxide and its prevention by succinateBiochim. Biophys. Acta681496503Google Scholar
  15. 15.
    Cavallini, L., Valente, M., Bindoli, A. 1984Comparison of cumene hydroperoxide – and NADPH/ Fe3+/ADP-induced lipid peroxidation in heart and liver submitochondrial particles. Mechanisms of protection by succinateBiochim. Biophys. Acta795466472Google Scholar
  16. 16.
    Hatefi, Y., Hanstein, W. G. 1970Lipid oxidation in biolo gical membranes .1. Lipid oxidation in submitochondrial particles and microsomes induced by chaotropic agentsArch. Biochem. Biophys1387386Google Scholar
  17. 17.
    Takeshige, K., Minakami, S. 1975Reduced nicotinamide adenine-dinucleotide phosphate-dependent lipid peroxidation by beef heart submitochondrial particlesJ. Biochem7710671073Google Scholar
  18. 18.
    Vianello, A., Macri, F., Cavallini, L., Bindoli, A. 1986Induction of lipid peroxidation in Soybean mitochondria and protection by respiratory substratesJ. Plant Physiol125217224Google Scholar
  19. 19.
    Ghisleni, G., Porciúncula, L. O., Cimarostia, H., Rocha, J. B. T., Salbego, C. G., Souza, D. O. 2003Diphenyl diselenide protects rat hippocampal slices submitted to oxygen–glucose deprivation and diminishes inducible nitric oxide synthase immunocontentBrain Res986196199Google Scholar
  20. 20.
    Oubidar, M., Boquillon, M., Marie, C., Schreiber, L., Bralet, J. 1994Ischemia-induced brain iron delocalization: Effect of iron chelatorsFree Radic. Biol. Med16861867Google Scholar
  21. 21.
    Porciúncula, L. O., Rocha, J. B. T., Cimarosti, H., Vinade, L., Ghisleni, G., Salbego, C. G., Souza, D. O. 2003Neuroprotective effect of ebselen on rat hippocampal slices submitted to oxygen-glucose deprivation: correlation with immunocontent of inducible nitric oxide synthaseNeurosci. Lett346101104Google Scholar
  22. 22.
    Hoyer, S., Krier, C. 1986Ischemia and the aging brain. Studies on glucose and energy metabolism in rat cerebral cortexNeurobiol. Aging72329Google Scholar
  23. 23.
    Folbergrová, J., Ljunggren, B., Norberg, K., Siesjö, B. K. 1974Influence of complete ischemia on glycolytic metabolites, citric acid cycle intermediates, and associated amino acids in the rat cerebral cortexBrain Res80265279Google Scholar
  24. 24.
    Medvedeva, L. V., Popova, T. N., Artyukhov, V. G., Matasova, L. V., Akatova, R. V. 2002Oxidative status and distribution of NADP-dependent isocitrate dehydrogenase and aconitate hydratase in rat cardiomyocytes under normal conditions and during ischemiaBull. Exp. Biol. Med134130134Google Scholar
  25. 25.
    Rossato, J. I., Zeni, G., Mello, C. F., Rubin, M. A., Rocha, J. B. T. 2002Ebselen blocks the quinolinic acid-induced production of thiobarbituric acid reactive species but does not prevent the behavioral alterations produced by intra-striatal quinolinic acid administration in the ratNeurosci. Lett318137140Google Scholar
  26. 26.
    Schwarz, R., Okuno, E., White, R. J., Bird, E. D., Whetsell, W. O.,Jr. 19883-Hydroxyantranilat oxygenase activity is increased in the brain of Huntington disease victimsProc. Natl. Acad. Sci. USA8540794081Google Scholar
  27. 27.
    Heyes, M. P., Saito, K., Crowley, J. S., Davis, L. E., Demitrack, M. A., Der, M., Dilling, L. A., Elia, J., Kruesi, M. J. P., Lackner, A., Larsen, S. A., Lee, K., Leonard, H. L., Markey, S. P., Martin, A., Milstein, S., Mouradian, M. M., Pranzatell, M. R., Quearry, B. J., Salazar, A., Smith, M., Strauss, S. E., Sunderland, T., Swedo, S. W., Tourtellotte, W. W. 1992Quinolinic acid and kynurenine pathway metabolism in inflammatory and non-inflammatory neurological diseaseBrain11512491273Google Scholar
  28. 28.
    Heyes, M. P. 1996The kynurenine pathway and neurological disease. Therapeutic strategiesAdv. Exp. Med. Biol398125129Google Scholar
  29. 29.
    Santamaría, A., Ríos, C. 1993MK-801, an N-methyl-D-aspartate receptor antagonist, blocks quinolinic acid-induced lipid peroxidation in rat corpus striatumNeurosci. Lett1595154Google Scholar
  30. 30.
    Cabrera, J., Reiter, R. J., Tan, D., Qi, W., Sainz, R. M., Mayo, J. C., Garcia, J. J., Kim, S. J., El- Sokkary, G. 2000Melatonin reduces oxidative neurotoxicity due to quinolinic acid: In vitro and in vivo findingsNeuropharmacology39507514Google Scholar
  31. 31.
    Porciúncula, L. O., Rocha, J. B. T., Boeck, C. R., Vendite, D., Souza, D. O. 2001Ebselen prevents excitotoxicity provoked by glutamate in rat cerebellar granule neuronsNeurosci. Lett299217220Google Scholar
  32. 32.
    Santamaria, A., Salvatierra-Sanchez, R., Vazquez-Roman, B., Santiago-Lopez, D., Villeda-Hernandez, J., Galvan-Arzates, S., Jiménez-Capdeville, M. E., Ali, S. F. 2003Protective effects of the antioxidant selenium on quinolinic acid-induced neurotoxicity in rats: in vitro and in vivo studiesJ. Neurochem86479488Google Scholar
  33. 33.
    Rios, C., Santamaria, A. 1991Quinolinic acid is a potent lipid peroxidant in rat brain homogenatesNeurochem. Res1611391141Google Scholar
  34. 34.
    Rossato, J. I., Ketzer, L. A., Centurião, F. B., Silva, S. J. N., Ludtke, D. S., Zeni, G., Braga, A. L., Rubin, M. A., Rocha, J. B. T. 2002Antioxidant properties of new chalcogenides against lipid peroxidation in rat brainNeurochem. Res27297303Google Scholar
  35. 35.
    Bellé, N. A. V., Dalmolin, G. D., Fonini, G., Rubim, M. A., Rocha, J. B. T. 2004Polyamines reduces lipid peroxidation induced by different pro-oxidant agentsBrain Res1008245251Google Scholar
  36. 36.
    Stípek, S., Stastný, F., Pláteník, J., Crkovská, J., Zima, T. 1997The effect of quinolinate on rat brain lipid peroxidation is dependent on ironNeurochemistry30233237Google Scholar
  37. 37.
    Platenik, J., Stopka, P., Vejrazka, M., Stipek, S. 2001Quinolinic acid–iron(II) complexes: Slow autoxidation, but enhanced hydroxyl radical production in the Fenton reactionFree Radic. Res34445459Google Scholar
  38. 38.
    Braughler, J. M., Duncan, L. A., Chase, R. L. 1986The involvement of iron in lipid peroxidation. Importance of ferric to ferrous ratios in initiationJ. Biol. Chem2611028210289Google Scholar
  39. 39.
    Minotti, G., Aust, S. D. 1992Redox cycling of iron and lipid peroxidationLipids27219226Google Scholar
  40. 40.
    Oubidar, M., Boquillon, M., Christine, M., Christine, B., Beley, A., Bralet, J. 1996Effect of intracellular iron loading on lipid peroxidation of brain slicesFree Radic. Biol. Med21763769Google Scholar
  41. 41.
    Braughler, J. M., Hall, E. D. 1989Central nervous system trauma and stroke. I. Biochemical considerations for oxygen radical formation and lipid peroxidationFree Radic. Biol. Med6289301Google Scholar
  42. 42.
    Bromont, C., Marie, C., Bralet, J. 1989Increased lipid peroxidation in vulnerable brain regions after transient forebrain ischemia in ratsStroke20918924Google Scholar
  43. 43.
    Krause, G. S., Joyce, K. M., Nayini, N. R., Zonia, C. L., Garritano, A. M., Hoehner, T. J., Evans, A. T., Indreri, R. J., Huang, R. R., Aust, S. D., White, B. C. 1985Cardiac arrest and resuscitation: Brain iron delocalization during reperfusionAnn. Emerg. Med1410371043Google Scholar
  44. 44.
    Ohkawa, H., Ohishi, N., Yagi, K. 1979Assay for lipid peroxides in animal tissues by thiobarbituric acid reactionAnal. Biochem95351358Google Scholar
  45. 45.
    Gutteridge, J. M. C. 1981Thiobarbituric acid-reactivity following iron-dependent free-radical damage to amino acids and carbohydratesFEBS Lett128343346Google Scholar
  46. 46.
    Halliwell, B., Gutteridge, J. M. C. 1981Formation of a thiobarbituric-acid-reactive substance from deoxyribose in the presence of iron salts: The role of superoxide and hydroxyl radicalsFEBS Lett128347352Google Scholar
  47. 47.
    Minotti, G., Aust, S. D. 1987An investigation into the mechanism of citrate–Fe2+-dependent lipid peroxidationFree Radic. Biol. Med3379387Google Scholar
  48. 48.
    Jacqes-Silva, M. C., Nogueira, C. W., Broch, L. C., Flores, E. M. M., Rocha, J. B. T. 2001Diphenyl disselenides and ascorbic acid changes deposition of selenium and ascorbic acid in brain of micePhamacol Toxicol44119125Google Scholar
  49. 49.
    Chiueh, C. C. 2001Iron overload, oxidative stress, and axonal dystrophy in brain disordersPediatr. Neurol25138147Google Scholar
  50. 50.
    Aruoma, O. I., Grootveld, M., Halliwell, B. 1987The role of iron in ascorbate-dependent deoxyribose degradation. Evidence consistent with a site-specific hydroxyl radical generation caused by iron ions bound to the deoxyribose moleculeJ. Inorg. Biochem29289299Google Scholar
  51. 51.
    Caro, A. A., Cederbaum, A. T. 2004Antioxidant properties of S-adenosyl-L-methionine in Fe2+-initiated oxidationsFree Radic. Biol. Med3613031316Google Scholar
  52. 52.
    Tang, L. X., Yang, J. L., Shen, X. 1997Effects of additional iron-chelators on Fe2+-initiated lipid peroxidation: Evidence to support the Fe2+...Fe3+ complex as the initiatorJ. Inorg. Biochem68265272Google Scholar
  53. 53.
    Quian, S. Y., Buettner, G. R. 1999Iron and dioxygen chemistry is an important route to initiation of biological free radical oxidations: An electron paramagnetic resonance spin trapping studyFree Radic. Biol. Med2614471456Google Scholar
  54. 54.
    Huang, X., Dai, J., Fournier, J., Ali, A. M., Zhang, Q., Frenkel, K. 2002Ferrous ion autoxidation and its chelation in iron-loaded human liver HepG2 cellsFree Radic. Biol. Med328492Google Scholar
  55. 55.
    Gutteridge, J. M. C. 1991Hydroxyl radical formation from the auto-reduction of a ferric citrate complexFree Radic. Biol. Med11401406Google Scholar
  56. 56.
    Westergaard, N., Banke, T., Wahl, P., Sonnewald, U., Schousboe, A. 1995Citrate modulates the regulation by Zn2+ of N-methyl-D-aspartate receptor-mediated channel current and neurotransmiter releaseProc. Natl. Acad. Sci. USA9233673370Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • Robson L. Puntel
    • 1
  • Cristina W. Nogueira
    • 1
  • João B. T. Rocha
    • 1
    • 2
  1. 1.Departamento de Química, Centro de Ciências Naturais e ExatasUniversidade Federal de Santa MariaSanta MariaBrazil
  2. 2.Departamento de Química, CCNEUniversidade Federal de Santa MariaSanta MariaBrazil

Personalised recommendations