Advertisement

Neural Processing Letters

, Volume 50, Issue 2, pp 1173–1189 | Cite as

Daily Urban Water Demand Forecasting Based on Chaotic Theory and Continuous Deep Belief Neural Network

  • Yuebing XuEmail author
  • Jing Zhang
  • Zuqiang Long
  • Mingyang Lv
Article

Abstract

The prediction of daily water demands is a crucial part of the effective functioning of the water supply system. This work proposed that a continuous deep belief neural network (CDBNN) model based on the chaotic theory should be implemented to predict the daily water demand time series in Zhuzhou, China. CDBNN should initially be used to predict the urban water demand time series. First, the power spectrum and the largest Lyapunov exponent is used to determine the chaotic characteristic of the daily water demand time series. Second, C–C method is utilized to reconstruct the water demand time series’ phase space. Lastly, the forecasting model should be produced with the continuous deep belief network and neural network algorithms implemented for feature learning and regression, respectively, and the CDBNN input established by the best embedding dimension of the reconstructed phase space. The proposed method is contrasted with the support vector regression, generalized regression neural networks and feed forward neural networks, and they are accepted with the identical dataset. The predictive performance of the models is examined using normalized root-mean-square error (NRMSE), correlation coefficient (COR), and mean absolute percentage error (MAPE). The results suggest that the hybrid model has the smallest NRMSE and MAPE values, and the largest COR.

Keywords

Daily water demand forecasting Deep belief networks CDBNN model Chaotic theory 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (No. 61573299), the Science and Technology Plan Project of Hunan Province (2016TP1020), the Open Fund Project of Hunan Provincial Key Laboratory of Intelligent Information Processing and Application for Hengyang Normal University (2017IIPAYB04), the Natural Science Foundation of Hunan Province (No. 2017JJ2011), and the Research Project of the Education Department of Hunan Province (No. 17A031).

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Herrera M, Torgo L, Izquierdo J, Pérez-García R (2010) Predictive models for forecasting hourly urban water demand. J Hydrol 387(1–2):141–150.  https://doi.org/10.1016/j.jhydrol.2010.04.005 CrossRefGoogle Scholar
  2. 2.
    Donkor EA, Mazzuchi TA, Soyer R, Roberson JA (2014) Urban water demand forecasting: review of methods and models. J Water Resour Plan Manag 140(2):146–159.  https://doi.org/10.1061/(ASCE)WR.1943-5452.0000314 CrossRefGoogle Scholar
  3. 3.
    Jain A, Kumar Varshney A, Chandra Joshi U (2001) Short-term water demand forecast modelling at IIT Kanpur using artificial neural networks. Water Resour Manag 15(5):299–321.  https://doi.org/10.1023/a:1014415503476 CrossRefGoogle Scholar
  4. 4.
    Jain A, Ormsbee LE (2002) Short-term water demand forecast modeling techniques-conventional methods versus AI. J (Am Water Works Assoc) 94(7):64–72CrossRefGoogle Scholar
  5. 5.
    Pulido-Calvo I, Roldán J, López-Luque R, Gutiérrez-Estrada JC (2003) Demand forecasting for irrigation water distribution systems. J Irrig Drain Eng 129(6):422–431.  https://doi.org/10.1061/(ASCE)0733-9437(2003)129:6(422) CrossRefGoogle Scholar
  6. 6.
    Bougadis J, Adamowski K, Diduch R (2005) Short-term municipal water demand forecasting. Hydrol Process 19(1):137–148.  https://doi.org/10.1002/hyp.5763 CrossRefGoogle Scholar
  7. 7.
    Adamowski JF (2008) Peak daily water demand forecast modeling using artificial neural networks. J Water Resour Plan Manag 134(2):119–128.  https://doi.org/10.1061/(ASCE)0733-9496(2008)134:2(119) CrossRefGoogle Scholar
  8. 8.
    Adamowski J, Karapataki C (2010) Comparison of multivariate regression and artificial neural networks for peak urban water-demand forecasting: evaluation of different ANN learning algorithms. J Hydrol Eng 15(10):729–743.  https://doi.org/10.1061/(ASCE)HE.1943-5584.0000245 CrossRefGoogle Scholar
  9. 9.
    Babel MS, Shinde VR (2011) Identifying prominent explanatory variables for water demand prediction using artificial neural networks: a case study of Bangkok. Water Resour Manag 25(6):1653–1676.  https://doi.org/10.1007/s11269-010-9766-x CrossRefGoogle Scholar
  10. 10.
    Bennett C, Stewart RA, Beal CD (2013) ANN-based residential water end-use demand forecasting model. Expert Syst Appl 40(4):1014–1023.  https://doi.org/10.1016/j.eswa.2012.08.012 CrossRefGoogle Scholar
  11. 11.
    Al-Zahrani MA, Abo-Monasar A (2015) Urban residential water demand prediction based on artificial neural networks and time series models. Water Resour Manag 29(10):3651–3662.  https://doi.org/10.1007/s11269-015-1021-z CrossRefGoogle Scholar
  12. 12.
    Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural Comput 18(7):1527–1554.  https://doi.org/10.1162/neco.2006.18.7.1527 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks. Science 313(5786):504–507.  https://doi.org/10.1126/science.1127647 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ar M, Dahl GE, Hinton G (2012) Acoustic modeling using deep belief networks. IEEE Trans Audio Speech Lang Process 20(1):14–22.  https://doi.org/10.1109/TASL.2011.2109382 CrossRefGoogle Scholar
  15. 15.
    Tamilselvan P, Wang P (2013) Failure diagnosis using deep belief learning based health state classification. Reliab Eng Syst Saf 115:124–135.  https://doi.org/10.1016/j.ress.2013.02.022 CrossRefGoogle Scholar
  16. 16.
    Sarikaya R, Hinton GE, Deoras A (2014) Application of deep belief networks for natural language understanding. IEEE/ACM Trans Audio Speech Lang Process 22(4):778–784.  https://doi.org/10.1109/TASLP.2014.2303296 CrossRefGoogle Scholar
  17. 17.
    Chen Y, Zhao X, Jia X (2015) Spectral–spatial classification of hyperspectral data based on deep belief network. IEEE J Sel Topics Appl Earth Observ Remote Sens 8(6):2381–2392.  https://doi.org/10.1109/JSTARS.2015.2388577 CrossRefGoogle Scholar
  18. 18.
    Tang B, Liu X, Lei J, Song M, Tao D, Sun S, Dong F (2016) DeepChart: combining deep convolutional networks and deep belief networks in chart classification. Sig Process 124:156–161.  https://doi.org/10.1016/j.sigpro.2015.09.027 CrossRefGoogle Scholar
  19. 19.
    Bai Y, Chen Z, Xie J, Li C (2016) Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. J Hydrol 532:193–206.  https://doi.org/10.1016/j.jhydrol.2015.11.011 CrossRefGoogle Scholar
  20. 20.
    Bai Y, Sun Z, Zeng B, Deng J, Li C (2017) A multi-pattern deep fusion model for short-term bus passenger flow forecasting. Appl Soft Comput 58:669–680.  https://doi.org/10.1016/j.asoc.2017.05.011 CrossRefGoogle Scholar
  21. 21.
    Shen F, Chao J, Zhao J (2015) Forecasting exchange rate using deep belief networks and conjugate gradient method. Neurocomputing 167:243–253.  https://doi.org/10.1016/j.neucom.2015.04.071 CrossRefGoogle Scholar
  22. 22.
    Zheng J, Fu X, Zhang G (2017) Research on exchange rate forecasting based on deep belief network. Neural Comput Appl.  https://doi.org/10.1007/s00521-017-3039-z CrossRefGoogle Scholar
  23. 23.
    Kuremoto T, Kimura S, Kobayashi K, Obayashi M (2014) Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing 137:47–56.  https://doi.org/10.1016/j.neucom.2013.03.047 CrossRefGoogle Scholar
  24. 24.
    Wang HZ, Wang GB, Li GQ, Peng JC, Liu YT (2016) Deep belief network based deterministic and probabilistic wind speed forecasting approach. Appl Energy 182:80–93.  https://doi.org/10.1016/j.apenergy.2016.08.108 CrossRefGoogle Scholar
  25. 25.
    Qin M, Li Z, Du Z (2017) Red tide time series forecasting by combining ARIMA and deep belief network. Knowl Based Syst 125:39–52.  https://doi.org/10.1016/j.knosys.2017.03.027 CrossRefGoogle Scholar
  26. 26.
    Oshima N, Kosuda T (1998) Distribution reservoir control with demand prediction using deterministic-chaos method. Water Sci Technol 37(12):389–395.  https://doi.org/10.1016/S0273-1223(98)00378-3 CrossRefGoogle Scholar
  27. 27.
    Tsonis AA (1992) Chaos: from theory to applications. Springer, NewYorkCrossRefGoogle Scholar
  28. 28.
    Rosenstein MT, Collins JJ, De Luca CJ (1993) A practical method for calculating largest Lyapunov exponents from small data sets. Phys D 65(1):117–134.  https://doi.org/10.1016/0167-2789(93)90009-P MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Khatibi R, Sivakumar B, Ghorbani MA, Kisi O, Koçak K, Farsadi Zadeh D (2012) Investigating chaos in river stage and discharge time series. J Hydrol 414–415(Supplement C):108–117.  https://doi.org/10.1016/j.jhydrol.2011.10.026 CrossRefGoogle Scholar
  30. 30.
    Zhao P, Zhang HW (2008) Chaotic characters and forecasting of urban water consumption. China Water Wastewater 24(5):90–94Google Scholar
  31. 31.
    Bai Y, Wang P, Li C, Xie J, Wang Y (2014) A multi-scale relevance vector regression approach for daily urban water demand forecasting. J Hydrol 517:236–245.  https://doi.org/10.1016/j.jhydrol.2014.05.033 CrossRefGoogle Scholar
  32. 32.
    Rathinasamy M, Khosa R (2012) Multiscale nonlinear model for monthly streamflow forecasting: a wavelet-based approach. J Hydroinform 14(2):424–442.  https://doi.org/10.2166/hydro.2011.130 CrossRefGoogle Scholar
  33. 33.
    Takens F (1981) Detecting strange attractors in turbulence. In: Rand D, Young L-S (eds) Dynamical systems and turbulence, Warwick 1980. Springer, Berlin, pp 366–381CrossRefGoogle Scholar
  34. 34.
    Kim HS, Eykholt R, Salas JD (1999) Nonlinear dynamics, delay times, and embedding windows. Physica D 127(1):48–60.  https://doi.org/10.1016/S0167-2789(98)00240-1 CrossRefzbMATHGoogle Scholar
  35. 35.
    Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50(5):346–349.  https://doi.org/10.1103/PhysRevLett.50.346 MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Brock WA, Hsieh DA, Lebaron BD (1993) Nonlinear dynamics, chaos, and instability: statistical theory and economic evidence. MIT Press, CambridgeGoogle Scholar
  37. 37.
    Lauret P, Fock E, Randrianarivony RN, Manicom-Ramsamy J-F (2008) Bayesian neural network approach to short time load forecasting. Energy Convers Manag 49(5):1156–1166.  https://doi.org/10.1016/j.enconman.2007.09.009 CrossRefGoogle Scholar
  38. 38.
    Teh YW, Hinton GE (2000) Rate-coded restricted Boltzmann machines for face recognition. Paper presented at the Proceedings of the 13th international conference on neural information processing systems, Denver, CO, January 2000Google Scholar
  39. 39.
    Hinton GE (2002) Training products of experts by minimizing contrastive divergence. Neural Comput 14(8):1771–1800.  https://doi.org/10.1162/089976602760128018 CrossRefzbMATHGoogle Scholar
  40. 40.
    Chen H, Murray AF (2003) Continuous restricted Boltzmann machine with an implementable training algorithm. IEE Proc Vis Image Signal Process 150(3):153–158.  https://doi.org/10.1049/ip-vis:20030362 CrossRefGoogle Scholar
  41. 41.
    Chen H, Murray A (2002) A continuous restricted Boltzmann machine with a hardware-amenable learning algorithm. Paper presented at the Proceedings of 12th international conference on artificial neural networks, Madrid, Spain, August 2002Google Scholar
  42. 42.
    Packard NH, Crutchfield JP, Farmer JD, Shaw RS (1980) Geometry from a time series. Phys Rev Lett 45(9):712–716.  https://doi.org/10.1103/PhysRevLett.45.712 CrossRefGoogle Scholar
  43. 43.
    Zhang G, Hu MY (1998) Neural network forecasting of the British pound/US dollar exchange rate. Omega 26(4):495–506.  https://doi.org/10.1016/S0305-0483(98)00003-6 CrossRefGoogle Scholar
  44. 44.
    Le Roux N, Bengio Y (2008) Representational power of restricted Boltzmann machines and deep belief networks. Neural Comput 20(6):1631–1649.  https://doi.org/10.1162/neco.2008.04-07-510 MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Electrical and Information EngineeringHunan UniversityChangshaChina
  2. 2.Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, College of Physics and Electronic EngineeringHengyang Normal UniversityHengyangChina

Personalised recommendations