Advertisement

Theoretical Foundations for the Alpha-Beta Associative Memories: 10 Years of Derived Extensions, Models, and Applications

  • Cornelio Yáñez-Márquez
  • Itzamá López-Yáñez
  • Mario Aldape-Pérez
  • Oscar Camacho-Nieto
  • Amadeo José Argüelles-Cruz
  • Yenny Villuendas-Rey
Article
  • 152 Downloads

Abstract

The current paper contains the theoretical foundation for the off-the-mainstream model known as Alpha-Beta associative memories (\(\alpha \beta \) model). This is an unconventional computation model designed to operate as an associative memory, whose main application is the solution of pattern recognition tasks, particularly for pattern recall and pattern classification. Although this model was devised, proposed and created in 2002, it is worth noting that its theoretical support remains unpublished to this day. This is despite the fact that more than a hundred scientific articles have been published with applications, improvements, and new models derived from the \(\alpha \beta \) model. The present paper includes all the required definitions, and the rigorous mathematical demonstrations of the lemmas and theorems, explaining the operation of the \(\alpha \beta \) model, as well as the original models it has inspired or that have been derived from it. Also, brief descriptions of 60 selected articles related to the \(\alpha \beta \) model are presented. These latter works illustrate the competitiveness (and sometimes superiority) of several extensions and models derived from the original \(\alpha \beta \) model, when compared against some models and paradigms present in the mainstream current scientific literature.

Keywords

Associative memory Binary operation Order relation \(\alpha \beta \) associative memories 

Notes

Acknowledgements

The authors would like to thank the Instituto Politécnico Nacional (Secretaría Académica, COFAA, SIP, CIDETEC, and CIC), the CONACyT, and SNI for their support to develop this work.

Supplementary material

11063_2017_9768_MOESM1_ESM.pdf (158 kb)
Supplementary material 1 (pdf 157 KB)

References

  1. 1.
    Anderson J, Rosenfeld E (1990) Neurocomputing: foundations of research. MIT Press, CambridgeGoogle Scholar
  2. 2.
    Steinbuch K (1961) Die Lernmatrix. Kybernetik 1:36–45.  https://doi.org/10.1007/BF00293853 CrossRefMATHGoogle Scholar
  3. 3.
    Willshaw D, Buneman O, Longuet-Higgins H (1969) Non-holographic associative memory. Nature 222:960–962.  https://doi.org/10.1038/222960a0 CrossRefGoogle Scholar
  4. 4.
    Anderson JA (1972) A simple neural network generating an interactive memory. Math Biosci 14:197–220.  https://doi.org/10.1016/0025-5564(72)90075-2 CrossRefMATHGoogle Scholar
  5. 5.
    Kohonen T (1972) Correlation matrix memories. IEEE Trans Comput 4:353–359.  https://doi.org/10.1109/TC.1972.5008975 CrossRefMATHGoogle Scholar
  6. 6.
    Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci 79:2554–2558.  https://doi.org/10.1073/pnas.79.8.2554 MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Abu-Mostafa Y, St. Jacques J (1985) Information capacity of the Hopfield model. IEEE Trans Inf Theory 31:461–464.  https://doi.org/10.1109/TIT.1985.1057069 CrossRefMATHGoogle Scholar
  8. 8.
    Ritter GX, Sussner P, Diaz-de-Leon JL (1998) Morphological associative memories. IEEE Trans Neural Netw 9:281–293.  https://doi.org/10.1109/72.661123 CrossRefGoogle Scholar
  9. 9.
    Wu Y, Batalama SN (2000) An efficient learning algorithm for associative memories. IEEE Trans Neural Netw 11:1058–1066.  https://doi.org/10.1109/72.870039 CrossRefGoogle Scholar
  10. 10.
    Kimoto T, Okada M (2001) Mixed state on a sparsely encoded associative memory model. Biol Cybern 85:319–325.  https://doi.org/10.1007/s004220100263 CrossRefGoogle Scholar
  11. 11.
    Xu NS, Bai YF, Zhang L (2003) A novel high-order associative memory system via discrete Taylor series. IEEE Trans Neural Netw 14:734–747.  https://doi.org/10.1109/TNN.2003.811700 CrossRefGoogle Scholar
  12. 12.
    Tao Q, Liu X, Cui X (2005) A linear optimization neural network for associative memory. Appl Math Comput 171:1119–1128.  https://doi.org/10.1016/j.amc.2005.01.123 MathSciNetMATHGoogle Scholar
  13. 13.
    Hélie S (2008) Energy minimization in the nonlinear dynamic recurrent associative memory. Neural Netw 21:1041–1044.  https://doi.org/10.1016/j.neunet.2008.06.005 CrossRefMATHGoogle Scholar
  14. 14.
    Knoblauch A (2011) Neural associative memory with optimal bayesian learning. Neural Comput 23:1393–1451.  https://doi.org/10.1162/NECO_a_00127 MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Wang M, Zhou T (2013) Multistability in a multidirectional associative memory neural network with delays. J Appl Math.  https://doi.org/10.1155/2013/592056 MathSciNetGoogle Scholar
  16. 16.
    Rendeiro D, Sacramento J, Wichert A (2014) Taxonomical associative memory. Cognit Comput 6:45–65.  https://doi.org/10.1007/s12559-012-9198-4 CrossRefGoogle Scholar
  17. 17.
    Heusel J, Löwe M, Vermet F (2015) On the capacity of an associative memory model based on neural cliques. Stat Probab Lett 106:256–261.  https://doi.org/10.1016/j.spl.2015.07.026 MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Tarkov MS (2016) Oscillatory neural associative memories with synapses based on memristor bridges. Opt Mem Neural Netw 25:219–227.  https://doi.org/10.3103/S1060992X16040068 CrossRefGoogle Scholar
  19. 19.
    Wang SJ, Yang Z (2017) Effect of similarity between patterns in associative memory. Phys Rev E 95:012309.  https://doi.org/10.1103/PhysRevE.95.012309 CrossRefGoogle Scholar
  20. 20.
    Hassoun M (1993) Associative neural memories. Oxford University Press, New YorkMATHGoogle Scholar
  21. 21.
    Cerón-Figueroa S, López-Yáñez I, Alhalabi W, Camacho-Nieto O, Villuendas-Rey Y, Aldape-Pérez M, Yáñez-Márquez C (2017) Instance-based ontology matching for e-learning material using an associative pattern classifier. Comput Hum Behav 69:218–225.  https://doi.org/10.1016/j.chb.2016.12.039 CrossRefGoogle Scholar
  22. 22.
    Moore J (1968) Elements of linear algebra and matrix theory. Mc Graw-Hill, New YorkGoogle Scholar
  23. 23.
    Rosen K (1995) Discrete mathematics and its applications. Mc Graw-Hill, New YorkGoogle Scholar
  24. 24.
    Yáñez-Márquez C, Sánchez-Fernández L, López-Yáñez I (2006) Alpha-Beta associative memories for gray level patterns. In: Wang J, Yi Z, Zurada J, Lu B, Yin H (eds) Advances in neural networks. Lecture notes in computer science, LNCS 3971. Springer, Heidelberg, pp 818–823.  https://doi.org/10.1007/11759966_120
  25. 25.
    Yáñez-Márquez C, Cruz-Meza M, Sánchez-Garfias F, López-Yáñez I (2007) Using Alpha-Beta associative memories to learn and recall RGB images. In: Liu D, Fei S, Hou Z, Zhang H, SunWang C (eds) Advances in neural networks. Lecture notes in computer science, LNCS 4493. Springer, Berlin, pp 828–833.  https://doi.org/10.1007/978-3-540-72395-0_101
  26. 26.
    Yáñez-Márquez C, Flores-Carapia R, López-Yáñez I (2007) An automatic color retrieval system based on artificial intelligence techniques. In: Proceedings of the 23rd ISPE international conference on CAD/CAM robotics and factories of the future, pp 345–349Google Scholar
  27. 27.
    Aguilar-Torres M, Argüelles-Cruz A, Yáñez-Márquez C (2008) A real time artificial vision implementation of quality inspection of industrial products In: IEEE computer society, proceedings for the electronics, robotics, and automotive mechanics conference, pp 277–282.  https://doi.org/10.1109/CERMA.2008.75
  28. 28.
    Guzmán E, Pogrebnyak O, Sánchez-Fernández L, Yáñez-Márquez C (2008) A fast search algorithm for vector quantization based on associative memories. In: Ruiz-Shulcloper J, Kropatsch W (eds) Progress in pattern recognition, image analysis and applications. Lecture notes in computer science, LNCS 5197. Springer, Berlin, pp 487–495.  https://doi.org/10.1007/978-3-540-85920-8_60
  29. 29.
    Guzmán E, Pogrebnyak O, Yáñez-Márquez C, Manrique P (2009) Vector quantization algorithm based on associative memories. In: Hernández A, Monroy R, Reyes C (eds) Advances in artificial intelligence. Lecture notes in computer science, LNCS 5845. Springer, Berlin, pp 324–336.  https://doi.org/10.1007/978-3-642-05258-3_29
  30. 30.
    Román-Godínez I, López-Yáñez I, Yáñez-Márquez C (2009) Classifying patterns in bioinformatics databases by using Alpha-Beta associative memories. In: Sidhu A, Dillon T (eds) Biomedical data and applications. Studies in computational intelligence, SCI 224. Springer, Berlin, pp 187210.  https://doi.org/10.1007/978-3-642-02193-0_8
  31. 31.
    López-Yáñez I, Flores-Carapia R, Yáñez-Márquez C, Camacho-Nieto O (2011) Automatic detection of cranial fractures in radiological images using a pattern classifier. Revista Facultad de Ingeniería 61:29–40Google Scholar
  32. 32.
    Aldape-Pérez M, Yáñez-Márquez C, Camacho-Nieto O, Argüelles-Cruz AJ (2012) A new tool for engineering education: hepatitis diagnosis using associative memories. Int J Eng Educ 28:1399–1405Google Scholar
  33. 33.
    Aldape-Pérez M, Yáñez-Márquez C, Camacho-Nieto O, Argüelles-Cruz AJ (2012) An associative memory approach to medical decision support systems. Comput Methods Progr Biomed 103:287–307.  https://doi.org/10.1016/j.cmpb.2011.05.002 CrossRefGoogle Scholar
  34. 34.
    Sepúlveda-Lima R, Yáñez-Márquez C, López-Yáñez I, Camacho-Nieto O (2012) A novel solution to the secure exchange of environmental engineering education data. Int J Eng Educ 28:1380–1387Google Scholar
  35. 35.
    Román-Godínez I, Yáñez-Márquez C (2007) Complete recall on Alpha-Beta heteroassociative memory. In: Gelbukh A, Kuri A (eds) Advances in artificial intelligence. Lecture notes in computer science, LNCS 4827, Springer, Berlin, pp 193–202.  https://doi.org/10.1007/978-3-540-76631-5_19
  36. 36.
    Aldape-Pérez M, Yáñez-Márquez C, Camacho-Nieto O (2008) Efficient pattern recalling using parallel Alpha-Beta associative memories. Res Comput Sci 35:147–156Google Scholar
  37. 37.
    Catalán-Salgado E, Yáñez-Márquez C, Argüelles-Cruz A (2008) Simplification of the learning phase in the Alpha-Beta associative memories. In: IEEE computer society, proceedings. Electronics, robotics, and automotive mechanics conference, pp 428–433.  https://doi.org/10.1109/CERMA.2008.72
  38. 38.
    Catalán-Salgado E, Yáñez-Márquez C, Figueroa-Nazuno J (2012) Significative learning using Alpha-Beta associative memories. In: Alvarez L, Mejail M, Gomez L, Jacobo J (eds) Progress in pattern recognition, image analysis, computer vision, and applications. Lecture notes in computer science, LNCS 7441, Springer, Berlin, pp 535–542.  https://doi.org/10.1007/978-3-642-33275-3_66
  39. 39.
    López-Yáñez I, Yáñez-Márquez C (2006) Using binary decision diagrams to efficiently represent Alpha-Beta associative memories. In: IEEE computer society, proceedings of the electronics, robotics, and automotive mechanics conference, pp 172–177.  https://doi.org/10.1109/CERMA.2006.96
  40. 40.
    Yáñez-Márquez C, López-Yáñez I, Camacho-Nieto O, Argüelles-Cruz AJ (2013) BDD-based algorithm for the minimum spanning tree in wireless ad hoc network routing. IEEE Latin Am Trans 11:600–601.  https://doi.org/10.1109/TLA.2013.6502868 CrossRefGoogle Scholar
  41. 41.
    Luna-Benoso B, Yáñez-Márquez C (2012) Alpha-Beta cellular automata. Computación y Sistemas 16:471–479.  https://doi.org/10.13053/cys-16-4-1438 Google Scholar
  42. 42.
    Luna-Benoso B, Flores-Carapia R, Yáñez-Márquez C (2013) Associative memories based on cellular automata: an application to pattern recognition. Appl Math Sci 7:857–866.  https://doi.org/10.12988/ams.2013.13077 MathSciNetCrossRefGoogle Scholar
  43. 43.
    Aldape-Pérez M, Yáñez-Márquez C, Argüelles-Cruz A (2008) FPGA implementation of parallel Alpha-Beta associative memories. In: Campilho A, Kamel M (eds) Image analysis and recognition. Lecture notes in computer science, LNCS 5112. Springer, Berlin, pp 1081–1090.  https://doi.org/10.1007/978-3-540-69812-8_108
  44. 44.
    López-Yáñez I, Argüelles-Cruz AJ, Camacho-Nieto O, Yáñez-Márquez C (2011) Pollutants time series prediction using the Gamma classifier. Int J Comput Intell Syst 4:680–711.  https://doi.org/10.2991/ijcis.2011.4.4.23 Google Scholar
  45. 45.
    Yáñez-Márquez C, López-Yáñez I, Sáenz-Morales G (2008) Analysis and prediction of air quality data with the Gamma classifier. In: Ruiz-Shulcloper J, Kropatsch W (eds.) Progress in pattern recognition, image analysis and applications. Lecture notes in computer science, LNCS 5197. Springer, Berlin, pp 651–658.  https://doi.org/10.1007/978-3-540-85920-8_79
  46. 46.
    López-Yáñez I, Yáñez-Márquez C, Sáenz-Morales G (2008) Application of the Gamma classifier to environmental data prediction. In: IEEE computer society, proceedings of the electronics, robotics, and automotive mechanics conference, pp 80–84.  https://doi.org/10.1109/CERMA.2008.35
  47. 47.
    López-Yáñez I, Yáñez-Márquez C, Silva García V (2009) Forecasting air quality data with the Gamma classifier. In: Yin P (ed) Pattern recognition. In-Tech, Croacia, pp 499512.  https://doi.org/10.5772/7528
  48. 48.
    Argüelles-Cruz A, Yáñez-Márquez C, López-Yáñez I, Camacho-Nieto O (2011) Prediction of CO and NOx levels in Mexico City using associative models. In: Iliadis L et al. (eds) Artificial intelligence applications and innovations. Advances in information and communication technology AICT 364. Springer, Heidelberg, pp. 13322.  https://doi.org/10.1007/978-3-642-23960-1
  49. 49.
    López-Martín C, López-Yáñez I, Yáñez-Márquez C (2012) Application of Gamma classifier to development effort prediction of software projects. Appl Math Inf Sci 6:411–418Google Scholar
  50. 50.
    López-Yáñez I, Sheremetov L, Yáñez-Márquez C (2013) Associative model for the forecasting of time series based on the Gamma classifier. In: Carrasco-Ochoa J, Martínez-Trinidad J, Salas J, Sanniti G (eds) Pattern recognition. Lecture notes in computer science, LNCS 7914. Springer, Berlin, pp 304–313.  https://doi.org/10.1007/978-3-642-38989-4_31
  51. 51.
    López-Yáñez I, Sheremetov L, Yáñez-Márquez C (2014) A novel associative model for time series data mining. Pattern Recogn Lett 41:23–33.  https://doi.org/10.1016/j.patrec.2013.11.008 CrossRefGoogle Scholar
  52. 52.
    Jurado-Sánchez OS, Yáñez-Márquez C, Camacho-Nieto O, López-Yáñez I (2014) Currency exchange rate forecasting using associative models. Res Comput Sci 78:67–76Google Scholar
  53. 53.
    Ramírez-Ramírez A, López-Yáñez I, Villuendas-Rey Y, Yáñez-Márquez C (2015) Evolutive improvement of parameters in an associative classifier. IEEE Latin Am Trans 13:1550–1555.  https://doi.org/10.1109/TLA.2015.7112014 CrossRefGoogle Scholar
  54. 54.
    Ramírez Ramírez A, López-Yáñez I, Villuendas-Rey Y, Yáñez-Márquez C (2015) Improving parameters of the Gamma associative classifier using differential evolution. Res Comput Sci 98:59–72Google Scholar
  55. 55.
    Uriarte-Arcia AV, Yáñez-Márquez C, Gama J, López-Yáñez I, Camacho-Nieto O (2015) Data stream classification based on the Gamma classifier. Math Probl Eng.  https://doi.org/10.1155/2015/939175 Google Scholar
  56. 56.
    Román-Godínez I, López-Yáñez I, Yáñez-Márquez C (2006) A new classifier based on associative memories. In: Proceedings of the 15th international conference on computing, pp 55–59.  https://doi.org/10.1109/CIC.2006.13
  57. 57.
    Román-Godínez I, Garibay-Orijel C, Yáñez-Márquez C (2011) Identification of functional sequences using associative memories. Revista Mexicana de Ingeniería Biomédica 32:109–118Google Scholar
  58. 58.
    López-Leyva L, Yáñez-Márquez C, López-Yáñez I (2007) A new efficient model of support vector machines: Alpha-Beta SVM. In: Proceedings of the 23rd. ISPE international conference on CAD/CAM robotics and factories of the future, pp 300–310Google Scholar
  59. 59.
    López-Leyva L, Yáñez-Márquez C, Flores-Carapia R, Camacho-Nieto O (2008) Handwritten digit classification based on Alpha-Beta associative model. In: Ruiz-Shulcloper J, Kropatsch W (eds) Progress in pattern recognition, image analysis and applications. Lecture notes in computer science, LNCS 5197. Springer, Berlin, pp 437–444.  https://doi.org/10.1007/978-3-540-85920-8_54
  60. 60.
    Solís-Villarreal JF, Yáñez-Márquez C, Suárez-Guerra S (2011) Automatic emotional speech recognition with Alpha-Beta SVM associative memories. Polibits 44:19–23CrossRefGoogle Scholar
  61. 61.
    Acevedo-Mosqueda ME, Yáñez-Márquez C, López-Yáñez I (2007) Alpha-Beta bidirectional associative memories: theory and applications. Neural Process Lett 26:1–40.  https://doi.org/10.1007/s11063-007-9040-2 CrossRefGoogle Scholar
  62. 62.
    Acevedo-Mosqueda ME, Yáñez-Márquez C, López-Yáñez I (2006) Alpha-Beta bidirectional associative memories based translator. Int J Comput Sci Netw Secur 6:190–194Google Scholar
  63. 63.
    Acevedo-Mosqueda ME, Yáñez-Márquez C, López-Yáñez I (2006) Complexity of Alpha-Beta bidirectional associative memories. In: Gelbukh A, Reyes-Garcia C (eds) Advances in artificial intelligence. Lecture notes in computer science, LNCS 4293. Springer, Berlin, pp 357–366.  https://doi.org/10.1007/11925231_34
  64. 64.
    Acevedo ME, Yáñez-Márquez C, Acevedo MA (2013) Bidirectional associative memories: different approaches. ACM Comput Surv 45:18:1–18:30.  https://doi.org/10.1145/2431211.2431217 Google Scholar
  65. 65.
    Acevedo ME, Yáñez-Márquez C, Acevedo MA (2010) Associative models for storing and retrieving concept lattices. Math Probl Eng.  https://doi.org/10.1155/2010/356029 MathSciNetMATHGoogle Scholar
  66. 66.
    Aldape-Pérez M, Yáñez-Márquez C, López -Leyva LO (2006) Optimized implementation of a pattern classifier using feature set reduction. Res Comput Sci 24:11–20Google Scholar
  67. 67.
    Aldape-Pérez M, Yáñez-Márquez C, López -Leyva L (2006) Feature selection using a hybrid associative classifier with masking techniques. In: Proceedings of the fifth Mexican international conference on artificial intelligence, pp 151–160.  https://doi.org/10.1109/MICAI.2006.15
  68. 68.
    Aldape-Pérez M, Yáñez-Márquez C, Argüelles-Cruz A (2007) Optimized associative memories for feature selection. In: MartıJ, Benedí J, Mendonça A, Serrat J (eds) Pattern recognition and image analysis. Lecture notes in computer science, LNCS 4477. Springer, Berlin, pp 435–442.  https://doi.org/10.1007/978-3-540-72847-4_56
  69. 69.
    Aldape-Pérez M, Yáñez-Márquez C, Camacho-Nieto O, Ferreira-Santiago A (2013) Feature selection using associative memory paradigm and parallel computing. Computación y Sistemas 17:41–52Google Scholar
  70. 70.
    Ferreira Santiago A, Yáñez-Márquez C, Aldape Perez M, López-Yáñez I (2014) Evolutionary approach to feature selection with associative models. Res Comput Sci 78:111–122Google Scholar
  71. 71.
    Cleofas-Sánchez L, Camacho-Nieto O, Sánchez-Garreta JS, Yáñez-Márquez C, Valdovinos-Rosas RM (2014) Equilibrating the recognition of the minority class in the imbalance context. Appl Math Inf Sci 8:27–36.  https://doi.org/10.12785/amis/080103 CrossRefGoogle Scholar
  72. 72.
    López-Yáñez I, Yáñez-Márquez C, Camacho-Nieto O, Aldape-Pérez M, Argüelles-Cruz AJ (2015) Collaborative learning in postgraduate level courses. Comput Hum Behav 51B:938–944.  https://doi.org/10.1016/j.chb.2014.11.055 CrossRefGoogle Scholar
  73. 73.
    Aldape-Pérez M, Yáñez-Márquez C, Camacho-Nieto O, López-Yáñez I, Argüelles-Cruz AJ (2015) Collaborative learning based on associative models: application to pattern classification in medical datasets. Comput Hum Behav 51B:771–779.  https://doi.org/10.1016/j.chb.2014.11.091 CrossRefGoogle Scholar
  74. 74.
    Cerón-Figueroa S, López-Yáñez I, Villuendas-Rey Y, Camacho-Nieto O, Aldape-Pérez M, Yáñez-Márquez C (2017) Instance-based ontology matching for open and distance learning materials. Int Rev Res Open Distrib Learn 18:177–195.  https://doi.org/10.19173/irrodl.v18i1.2681 CrossRefGoogle Scholar
  75. 75.
    García-Floriano A, Ferreira-Santiago A, Yáñez-Márquez C, Camacho-Nieto O, Aldape-Pérez M, Villuendas-Rey Y (2017) Social web content enhancement in a distance learning environment: intelligent metadata generation for resources. Int Rev Res Open Distrib Learn 18:161–176.  https://doi.org/10.19173/irrodl.v18i1.2646 CrossRefGoogle Scholar
  76. 76.
    Ferreira-Santiago A, López-Martín C, Yáñez-Márquez C (2016) Metaheuristic optimization of multivariate adaptive regression splines for predicting the schedule of software projects. Neural Comput Appl 27:22292240.  https://doi.org/10.1007/s00521-015-2003-z CrossRefGoogle Scholar
  77. 77.
    Uriarte-Arcia AV, López-Yáñez I, Yáñez-Márquez C (2014) One-hot vector hybrid associative classifier for medical data classification. PLoS ONE 9:e95715.  https://doi.org/10.1371/journal.pone.0095715 CrossRefGoogle Scholar
  78. 78.
    García-Floriano A, Camacho-Nieto O, Yáñez-Márquez C (2015) Heaviside’s classifier. NovaScientia 7:365–397.  https://doi.org/10.21640/ns.v7i14.269 Google Scholar
  79. 79.
    Ortiz-Ángeles S, Villuendas-Rey Y, López-Yáñez I, Camacho-Nieto O, Yáñez-Márquez C (2017) Electoral preferences prediction of the YouGov social network users based on computational intelligence algorithms. J Univers Comput Sci 23:304–326MathSciNetGoogle Scholar
  80. 80.
    Ramírez-Rubio R, Aldape-Pérez M, Yáñez-Márquez C, López-Yáñez I, Camacho-Nieto O (2017) Pattern classification using smallest normalized difference associative memory. Pattern Recogn Lett 93:104–112.  https://doi.org/10.1016/j.patrec.2017.02.013 CrossRefGoogle Scholar
  81. 81.
    Villuendas-Rey Y, Rey-Benguría C, Ferreira-Santiago A, Camacho-Nieto O, Yáñez-Márquez C (2017) The naïve associative classifier (NAC): a novel, simple, transparent, and accurate classification model evaluated on financial data. Neurocomputing.  https://doi.org/10.1016/j.neucom.2017.03.085 Google Scholar
  82. 82.
    Antón-Vargas JA, Villuendas-Rey Y, Yáñez-Márquez C, López-Yáñez I, Camacho-Nieto O (2017) Improving the performance of an associative classifier by Gamma rough sets based instance selection. Int J Pattern Recogn Artif Intell.  https://doi.org/10.1142/S0218001418600091 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Unidad Profesional Adolfo López Mateos, Instituto Politécnico NacionalCentro de Investigación en ComputaciónMexicoMexico
  2. 2.Unidad Profesional Adolfo López Mateos, Instituto Politécnico NacionalCentro de Innovación y Desarrollo Tecnológico en CómputoMexicoMexico

Personalised recommendations